// layered

—topology
Each layer of the layered
architecture style has a specific Presentation Layer
role and responsibility within the
architecture Business Layer
—usage Persistence Layer

Good for small and simple website

Database Layer

// pipeline

—topology

The pipes and filters coordinate in
a specific fashion, with pipes
forming one-way communication
between filters, usually in a point-
to-point fashion

—usage
specially tasks that facilitate
simple, one-way processing

— USe cases
bash, zsh, apache camel etc

_ Pipe _ Pipe _
(Filter } > Filter } > Filter)

Pipe

A 4

(.) Pipe (.)
Fllter Fllter

// microkernel

—topology

Simple monolithic architecture
consisting of two architecture
components: a core system and
plug-in components

—usage
Most of the tools used for

developing and releasing software

are implemented using the
microkernel architecture

— US€e CASesS

Some examples include the
Eclipse IDE, PMD, Jira, and
Jenkins, to name a few).

Data Store

.l

Data Store

i

p

Plug-in

Component

ﬂ

.

Plug-in
Component

i

Core System

i

Plug-in
Component

H

Plug-in
Component

!

Data Store

Data Store

// service based

—topology
Fine Grained _Se(’vices with Single [User Interface J
Database - distributed macro
layered structure consisting of a —Y —Y
Separately deployed user (Component) (Component) (Component) (Component)
interface, separately deployed

remote coarse-grained services,
and a monolithic database.

—usage
A good choice for achieving a good
level of architectural modularity without
having to get tangled up in the

complexities and pitfalls of granularity hybrid version of micro services architecture
business transaction.

Database

// event driven

—topology
Request-based model -
There are two primary topologies
within this architecture: the

mediator topology and the broker
topology.

—usage
asynchronous communication for
both fire-and-forget processing

(no response required) as well as
request/reply processing.

— US€e CAaSes

Posting comments, Retrieving
order history information,
preparing and downloading bank
statement etc

Initiating [—_—_—
Event

<

Event
Processor

(Component)

(Component)

Z e

Event
Processor

(Component)

(Component)

Processing

broker topology.

Event

Event

Event

Processing B (@IREED

Event
Processor

(Component)

<L

Event
Processor

(Component)
(Component)

4

Event
Processor

(Component)
(Component)

Event
Chagnel

v

<

Event
Processor

(Component)
(Component)

Event
Chapnel

v

4

Event
Processor

(Component)
(Component)

Event
Cha@nel

v

Event
Processor

(Component)
(Component)

Event
Cha@nel

v

4

Event
Processor

(Component)
(Component)

// space based ,

Processing Unit Processing Unit Processing Unit

—topology
High scalability, high elasticity, and
high performance are achieved by

In-Memory Data Grid In-Memory Data Grid In-Memory Data Grid
P Cache OO 00O Cache O OO0 CacheOO 00
removi ng the central database as Data Replication Data Replication Data Replication

C Engine l I Engine I Engine
a synchronous constraint in the

system and instead leveraging

replicated in-memory data grids. Virtualized Middleware
Messaging Grid Processing Grid Deployment
— UuUSage Manager
Mostly use in case high elastic R
system is required e D

— US€e CasSes

Database
| | | | 5 Data Writer
Online Auction, Concert Ticketing -I

- Popular Star Movie Launch

// orchestrated SOA

—topology
It establishes a taxonomy of
services within the architecture,
each layer with a specific
responsibility.

—usage
This style of service-oriented
architecture appeared just as

companies were becoming
enterprises in the late 1990s:

— US€e CASesS

Merging with smaller companies,
growing at a break-neck pace, and
requiring more sophisticated IT to
accommodate this growth.

usiness G G
Services

. Orchestration Engine
Enterprise
Service Bus :
Integration Hub

Enterprise
Services

' ES ' ' ES ' ' ES '

Application Infrastructure
Sevices. (A) As) sevices (18)15)

// microservices

Microfrontend
—topology

Ul Ul Ul Ul
Component Component Component Component
Distributed and loosely coupled.

It is heavily inspired by the ideas in API Layer
domain-driven design (DDD), a logical
design process for software projects.

Treat each function as an independent
service that can be changed, updated,
or deleted without disrupting the rest of
the application.

— UuUSage

- When you want your monolithic
application to accommodate
scalability, agility, manageability and
delivery speed

- If the goal requires high degrees of
decoupling and separation of
concerns for service owners.

Database Database Database Database Database

—style rating against architectural characteristics

architects must deal with the extraordinarily wide variety of architecture
characteristics across all different aspects of software projects

Architectural Service Orchestration
Characteristics Microkernal |Pipeline |Layered |Based Event Driven |Space Based |[Driven SOA |Microservices
Number of Quanta T 1 1 1 to Many 1 to Many 1 to Many 1 1 to Many
Deployability Ak *k * KAKk KAk Ak *x K AKX
Elasticity x *x * *k Kk k *okkkk okk *okkkk
Evolutionary Kk k *xkk [k Kk k *okkkk kkk * *okkkk
Fault Tolerance * * * 1 0.0 0. ¢ 1.20.0.0.0. G 9.0 ¢ Yok k 1. 0. 0.0, ¢
Modularity *okk *kk [k Kk kk Kk kk Kk ok kX *ok A Ak
Overall Cost Kk AAk | Fokkkok | Rokkkok dokkok Kk k *k * *x
Performance YAk Kk Kk YAk 1.2.0.0.0 . GED ¢.0.0.9.¢ Kk K
Reliability Kk k xkk Dkk pDokokk Kk k Kk kk *k Kk kk
Scalability * * * ok k 1.0.0.0.0. G . 0.0.0.0.¢ 1. 0.0.0.¢ 1. 0.0.0.9.¢
Simplicity okkok |dokokokok Yokokkok ok *x x * X
Testability *hk *hkk kk Kk Aok *k * * Kk Ak ok

