
Enexis URI strategy

Ton Donker ton.donker@enexis.nl

Towards a uniform API URI structure based on Nbility and Domain Driven Design

Version: 20240115◆

2

Change history

DocumentChangesVersion

Enexis_URI_strategie_20230618.pptxInitial release20230618

Enexis_URI_strategie_20230706.pptxReview System Architect20230706

Enexis_URI_strategie_20230714.pptxReview Information Analyst, Engineer20230714

Enexis_URI_strategie_20230721.pptxReview Information Analyst, Engineer, Product Owner20230721

Enexis_URI_strategie_20231013.pptxReview Enterprise Architect, Integration Architect20231013

Enexis_URI_strategie_20231111.pptxReview API developers20231111

Enexis_URI_strategie_20240115.pptxFinal review and approved20240115

3

Related documents

SourceTitle

Bijlage 2 Enexis APIs - Standaarden & Richtlijnen - Integratie & Data
Autoriteit (IDA) - Confluence (atlassian.net)

Enexis APIs Standaarden en Richtlijnen

NBility > EDSN CorporateNbility

To be definedHAL-Implementatie-ECDM

To be definedEnexis Integration Terminology

To be definedSector community URI Strategy

4

Contents

 Preface
 Reading guide
 Introduction
 Overview design rules
 URI strategy - endpoint structure
 URI design - {context}
 {context} - design rules
 {context} - design rationale
 {context} - design literature
 URI design - {API}
 {API} - design rules
 {API} - design rationale
 {API} - design literature
 URI design - {resource}
 {resource} - design rules
 {resource} - design rationale
 {resource} - design literature
 Processing resource
 Query parameters
 Syntax principles
 Security and Privacy
 Privacy Statement

 Appendix A - DDD: Bounded Context examples
 Appendix B - URIs, URLs and URNs
 Appendix C - RFC3986
 Appendix D - Sector community URI strategy
 Appendix E - Message Broker Topics
 Appendix F - Dutch government URI examples
 Bibliography

5

Preface

This document aims to establish guidelines and design patterns for creating, managing, and designing
URIs effectively within the Enexis API ecosystem. A well-defined URI strategy ensures that URIs are
consistent, meaningful and scalable, facilitating efficient resource identification and retrieval.

The Nbility model and the Domain-Driven Design (DDD) approach lay the foundation for this URI strategy.
Where Nbility describes the WHAT: business capabilities in the problem space, Domain-Driven Design
concentrates on the HOW: bounded contexts in the solution space. Both methodologies help to structure
and shape the URI endpoint design process, by identifying boundaries and providing patterns for clear and
well-designed URIs.

This presented strategy primarily aims at architects, API designers, and developers and anyone involved in
the URI design process. The most important part of this document is a set of ten design requirements - the
Ten Enexis URI Commandments - that must be followed in the URI definition process. Each requirement is
theoretically justified and accompanied by clear examples. All design requirements MUST be fulfilled in
order to achieve consistency, uniformity and clarity in API URI endpoints.

For substantive questions, you are welcome to contact Integration Business Support team for further
assistance.

6

Reading guide

This document is prepared for architects, designers, and (API) developers and contains the following
information for each target audience:

(API) DevelopersDesignersArchitects

XXX1. URI Strategy

XX2. URI Implementation

XX3. Nbility Requirements

X4. Domain-Driven Design

XXX5. Privacy Aspects

7

Reading guide

Target audience:

This URI strategy is based on the Nbility sector model and the Bounded Context concept of Domain-
Driven Design. Knowledge of Nbility and Domain-Driven Design is therefore essential when designing
the URI endpoints of an API. Architects and designers are the primary knowledge holders of the Nbility
model, while architects also possess expertise in Domain-Driven Design. The URI implementation is
relevant for designers and developers. Information about privacy aspects is important for all target
audiences.

Document structure:

This document is structured as a top-down hierarchy: first, the Ten Enexis URI commandments are
presented in a clear overview. Subsequently, the reader can gain insight into the design choices and
references to literature to read the underpinning of the design rule in detail.

All the requirements imposed on URIs are outlined in this document. The requirements for the path
components are structured as follows: a brief introduction is followed by the presentation of the design
rule. The rule is then explained and substantiated in the rationale. Subsequently, references to literature
are provided, and a conclusion is offered, confirming and supporting the design rationale.

This document concludes with appendices that provide additional background information.

8

Introduction

What’s the result?

Consistency, uniformity and clarity in API URI endpoint naming, combined with the concept of bounded context as business
context boundary, result in the exposure of meaningfull business capabilities through APIs with clear responsibilities, objectives
and optimal usability.

What’s the solution?

Since meaning is determined by context, the Domain-Driven Design methodology can be applied to identify bounded contexts.
Bounded contexts represent linguistic boundaries for domain objects and help eliminate ambiguity. Bounded contexts have
influence on the design, ownership, scope and purpose of an API. Therefore, the solution is to include the bounded context in the
URI endpoint of an API to unambiguously represent domain objects (meaning) and expose clear business capabilities (purpose).

What’s the problem?

A URI design strategy is crucial for creating a consistent and intuitive API endpoint structure, making it easier for consumers and
developers to understand and use the API. The problem is how to develop a well-defined URI strategy, to ensure that URIs are
consistent, meaningful and predictable, facilitating efficient resource identification and retrieval.

9

Introduction

Problem example

Enexis has used the following pattern to structure the URI of an API endpoint:

https://apigateway.enexis.nl/{APIname}/{version}/{resource} e.g.:
https://apigateway.enexis.nl/meter-register/v1/meters.

However, the domain object meter can have different meanings depending on the relevant context. For instance meter in de
context of 'technical infrastructure' may have different attributes and semantics compared to the context of 'customer and market,'
or in the context of 'asset management.'

The context dependency of a domain object is addressed in Domain Driven Design by the concept of bounded context. A
classical example is given by Martin Fowler in which bounded contexts for polyseme meter are suggested. The solution is to
reserve a dedicated component in the URI for the bounded context annnotation, e.g:

https://apigateway.enexis.nl/asset-management/meter-registration/v1/meters

where asset-management represents the bounded context and functions as a linguistic boundary for the meter domain object. An
additional benefit of this approach is that it allows for the identification of the responsible team through context. According to DDD
principles, a bounded context is managed by one team only, and bounded contexts also define team boundaries.

Solution example

10

Introduction

Route to solution

Since there is an overlap and strong relationship between bounded contexts and business capabilties or subdomains, the Nbility
model can be utilized as basis for the identification of bounded contexts. Therefore the route to solution is: identify bounded
context based on business capabilities and terminologies provided by the Nbility paradigm and include context annotation in the
path component of the URI. In the following slides the new URI pattern is explained in detail.

11

Overview design rules

DescriptionRule

Define the path component {context} based on the relevant bounded context. If no bounded context has been determined yet, choose
Nbility business capability level 3

ENX-URI-001

Define {context} name based on the noun-verb format, like ‘customer-support, ‘debts-management’, grid-components-development’ENX-URI-002

Define {API} name based on the format noun-verb, like ‘planned-outages-management, ‘connection-details-retrieval’, ‘product-
installations-registration’

ENX-URI-003

Define verb part of {API} name based on the predetermined keywords to express its purpose and objectiveENX-URI-004

Define noun part of {API} name on toplevel (root) resource – align with Nbility business objectsENX-URI-005

Define the {resource} component of the URI based on the Nbility business objects and their associationsENX-URI-006

The use of controllers is allowed sparingly, and they appear as the last segment in a URI path, serving as an imperative verb with no
child resources

ENX-URI-007

Query parameters must be used for filtering, sorting and hypermedia and prefixed with an underscore in case of meta functionalityENX-URI-008

The URI must follow general syntax principles and should comply with recommended syntax principlesENX-URI-009

In the URI, a limited set of regular personal data is allowed, but special personal data or combinations of regular personal data are
never permitted

ENX-URI-010

12

1. URI strategy – endpoint structure

 https://apigateway.enexis.nl/{context}/{API}/{version}/{resource}

{Resource1}

{Resource2}

{Resource3}

{Resource4}

{Resource5}

Target Endpoint1

Target Endpoint2

Target Endpoint3

Target Endpoint4

Target Endpoint5

On-premises applications

{API}

Cloud applications

{API}

{version}

{version}

The key abstraction of information in an API is a resource. A resource is always a plural noun
expressing a functional business object, collection or register. A resource represents a physical
endpoint, either operational on-premise or in cloud environments. Context is used to classify groups of
APIs on a functional and organizational level and provides namespaces in which every API is uniquely
identified and named. This means that an identical API name can reoccur in different contexts.

API
Management

{context}

13

 https://apigateway.enexis.nl (base URI of all APIs)

 /{context} - (unique annotation of the context)

 /{API} - (API name)

 /{version} - (major version of API)

 /{resource} - (resource, collection or register)

Examples:

 https://apigateway.enexis.nl/customer-support/customer-tickets-registration/v1/tickets

 https://apigateway.enexis.nl/outage-assessment/planned-outages-management/v2/planned-outages

 https://apigateway.enexis.nl/asset-management/meter-details-retrieval/v3/meters

1. URI strategy – endpoint structure

Base URL

The base URI of the test- and acceptance environement are respectively https://apigateway-tst.enexis.nl and https://apigateway-acc.enexis.nl

{API name} {version}{resource}{context}

14

 https://apigateway.enexis.nl (base URL of all APIs)

 /{context} – (unique annotation of the context)

Key message is that APIs are based on bounded contexts. By identifying bounded contexts, the scope, purpose and
team ownership of an API representing a business capability with unambiguous domain objects (aka resources)
becomes clear. There are two aspects that can be used as guidance to identify bounded contexts — terminology and
business capabilities1.

Defining clear boundaries is an important factor for APIs, as it helps to accelerate the API design and development
process by scoping APIs to a specific set of responsibilities2.

The Nbility model3 with categorized business capabilities level 3 can be used as a starting point for the identification
process of bounded contexts. Identifying the bounded context precedes the design of the API3. To provide contexts
with a uniform naming, the format noun-verb is required for naming a bounded context.

2. URI design – {context}

1. [Millett 2015a] p128
2. [Higginbotham 2022] p72
3. https://www.edsn.nl/nbility-model/

15

Define the path component {context} based on the relevant bounded context. If no bounded context has been determined yet,
choose Nbility business capability level 3

Define {context} name based on the noun-verb format, like ‘customer-support, ‘debts-management’, ‘grid-components-developement’

Example:
 https://apigateway.enexis.nl/outage-assessment/planned-outages-management/v2/planned-outages

2. {context} – design rules

ENX-URI-001

ENX-URI-002

{context} in noun-verb format and based on Nbility (reference: C.2.3.2)

16

2. {context} – design rationale

While (micro)services are aligned with business capabilities4, bounded contexts are aligned with (sub)domains.
To draw this comparison further: (micro)services can be seen as the implementation or realization of business
capabilities. They are typically designed, developed, and deployed to enable and support specific business
processes or functions. Same holds for bounded contexts as the implementation of (sub)domains.

According to the Domain-Driven Design literature,
business capabilities can be associated with
(sub)domains as part of the problem space describing
the WHAT, whereas bounded contexts belong to the
solution space, describing the HOW2. Conceptually,
they are different things, but there is a strong
relationship and even overlap.

It is a desirable goal to align subdomains one-to-one
with bounded contexts3.

1. Figure from: https://speakerdeck.com/mploed/riding-the-elevator-domain-driven-design-in-the-penthouse?slide=47
2. https://medium.com/nick-tune-tech-strategy-blog/domains-subdomain-problem-solution-space-in-ddd-clearly-defined-e0b49c7b586c

[Khononov 2022] p298: … a subdomain bounds a business capability…;
[Vaughn 2013] p76
https://towardsdatascience.com/data-domains-where-do-i-start-a6d52fef95d1

3. [Vaughn 2013] p77
4. https://martinfowler.com/articles/microservices.html: …services are built around business capabilities

17

2. {context} – design rationale

1. Figure from [Vernon 2013] p70
2. https://contextmapper.org/docs/language-model/
3. https://www.edsn.nl/nbility-model/

As depicted in the figure on the left, it is possible for
bounded contexts to have an n;n relationship with
subdomains2. A bounded context can implement 1..*
subdomains (or parts of subdomains) and a
subdomain can be implemented by 1..* bounded
contexts (or parts of bounded contexts).

Ideally, there is a 1:1 relationship between bounded
contexts and subdomains. However, in practice, this
relationship can vary depending on the specific
domain's structure and complexity. The key message
of this design rationale is that the Nbility model with
categorized business capabilities level 3 can be used
as a starting point3 for the identification process of
bounded contexts. This can lead to a many-to-many
alignment between bounded contexts and business
capabilities or subdomains.

18

2. {context} – design rationale

1. Appendix D overviews an extensive list of bounded context naming examples as used in the DDD literature
2. https://pubs.opengroup.org/togaf-standard/business-architecture/business-capabilities.html#_Toc95135880
3. While 'management' is a noun and not a verb, TOGAF uses the term 'noun-verb' to identify this compound combination of nouns See also:

https://enterprise-architecture.org/university/business-capability-modelling/
4. Bounded context naming examples that match this pattern are (source: https://stefan.kapferer.ch/2020/09/14/domain-driven-service-design/):

- Customer Management
- Debt Collection
- Risk Management
- Account Management [Millett] p270

There is no strict naming convention for bounded contexts in Domain-Driven Design, as the naming of
bounded contexts is subjective and depends on the specific domain and the understanding of the
development team. However, it is generally recommended to use clear and descriptive names that reflect
the purpose and responsibilities of the bounded context1.

The TOGAF standard2 provides a naming convention for a business capability in a noun-verb3 format, e.g.:
project-management or strategy-planning. The first noun part of the naming convention is a business
object, the second part is the activity associated with the object. Since bounded contexts are related to
business capabilities/subdomains, the TOGAF naming convention can be used as guidance for naming the
context in the path component of the API URI endpoint4.

This design rationale is further motivated and justified in {context} - design literature

19

 https://apigateway.enexis.nl (base URL of all APIs)

 /{context} – (unique annotation of the context)

 /{API} - (API name)

The API name conveys the purpose and objectives of the API. To maintain a consistent naming convention for APIs,
it is required to use the noun-verb format, with predetermined values for the verb part:

The noun part in the API name should be derived from the Nbility business objects, aligning with the use cases and
problems the API aims to address.

3. URI design – {API}

DescriptionKeyword

… if the main purpose of the API is to register information (write)registration

… if the main purpose of the API is to retrieve information (read)retrieval

… if the main purpose of the API is both read/write and it impacts the total lifecycle of a resourcemanagement

… if the main purpose of the API is to perform calculations or determine numerical valuescomputation

… if the main purpose of the API is to handle events and notificationsnotification

… if the main purpose of the API is to exchange and transfer datatransfer

20

Define {API} name based on the format noun-verb, like ‘planned-outages-management, ‘connection-details-retrieval’,
‘product-installations-registration’

Define verb part of {API} name based on the predetermined keywords to express its purpose and objective

Define noun part of {API} name on toplevel (root) resource – align with Nbility business objects

Example:
 https://apigateway.enexis.nl/outage-assessment/planned-outages-management/v2/planned-outages

3. {API} – design rules

ENX-URI-003

ENX-URI-004

{API name} is based on predetermined keyword and root resource

ENX-URI-005

21

There are best practices for naming APIs:

 Choose names that accurately reflect the purpose and functionality of the API. Names should be intuitive,
concise, and self-explanatory;

 APIs typically represent resources or actions. Use noun phrases to describe the resources and actions the
API provides. For example: user-profile or order-creation1;

 The name of the API is typically indistinguishable from the name of the resource that can be manipulated
by the API2;

 An API name / endpoint is the location where a service can be accessed3;
 The URI of a REST API identifies the service within the system component4;

REST advocates a resource-oriented approach: URIs should reflect the resources themselves rather than the
actions performed on them. This applies to both the resource path (after the version number) and the Base
URL, which is the URL prefix for all APIs5.

.

3. {API} – design rationale

1. In Higginbotham [2021] p112 APIs are named: ‘Shopping API’, ‘Order Creation API’ and ‘Payment Processing API’
2. Biehl [2015] p52
3. Zimmermann [2021]
4. Sloos [2020]
5. https://swagger.io/docs/specification/api-host-and-base-path/

22

3. {API} – design rationale

1. Examples: https://developer.overheid.nl/apis and Appendix F
2. Example: The API ‘Ruimtelijke plannen opvragen’ has the following URI endpoint: https://ruimte.omgevingswet.overheid.nl/ruimtelijke-

plannen/api/opvragen/v4

Including the name of the API in the Base URL of the URI is common practice in both the Dutch1 and energy
sector community URI strategy.

The base URL is composed of the {context} and {API} components. In {API} - design literature it is explained
that the {API} component represents an interface bounded context, as a separate bounded context nested
hierarchically within the parent {context}.

By defining the API name in the noun-verb format as described in the previous slides, the URI guidelines and
design rules of the Dutch Energy sector are followed, aiming to establish a uniform naming strategy in the
energy sector.

Note that the Dutch government (DSO) allows verbs in the API names2. In the Dutch energy sector community,
we have decided not to adopt this as this is not in line with common best practices, conflicts with the uniform
interface and leads to poor HTTP resource design.

23

Using a predetermined keyword in the API name adds semantics and clarity to the purpose and goal of the
API and carves out the architectural role API endpoints (emphasis on data or activity)1. The API name
expressed as a combination verb-noun gives answer to the consumer question ‘…what can I do with this API
….?’. When choosing an API name is too hard, it can be a sign of design smell2.

Best practices for naming command messages and events are also based on noun verb combinations. For
command messages, examples include: ’PlaceOrder’, ‘CheckOffer’ while for events examples are:
‘OrderProcessed’, ‘OfferUpdated’3.

This design rationale is further motivated and justified in {API} - design literature

Examples:
 https://apigateway.enexis.nl/installation-management/facilities-management/v1/facilities Nbility C.6.2.2

 https://apigateway.enexis.nl/measurement-collection/measurements-retrieval/v2/measurements Nbility C.4.1.2

 https://apigateway.enexis.nl/customer-support/contact-moments-registration/v2/customer-interactions Nbility C.1.1.1

3. {API} – design rationale

1. [Zimmermann 2022] p162
2. https://apihandyman.io/pink-fluffy-unicorn-api-wtf-or-3-reasons-why-choosing-a-not-meaningful-API-name-can-be-a-problem/
3. [Zimmermann 2022] p194

24

 https://apigateway.enexis.nl

 /{context} – (unique annotation of the context)

 /{API} - (API name)

 /{version} - (major version of API)

 /{resource} - (resource, collection or register)

4. URI design – {resource}

Resources are based on and aligned with the Nbility business
objects. The business objects can be related with each other,
either associatively or hiërarchically. To design cohesive APIs,
related business objects can be combined within the same API
as long it does not conflict with the scope boundary of the
bounded context ownership or conflicting Nbility information
domains. Nbility information domains

25

Define the {resource} component of the URI based on the Nbility business objects and their associations

Examples:
 https://apigateway.enexis.nl/market-contract-management/contract-management/v1/market-agreements

 https://apigateway.enexis.nl/market-contract-management/contract-management/v1/accounting-points

 https://apigateway.enexis.nl/customer-support/contact-moments-registration/v2/customer-interactions

 https://apigateway.enexis.nl/customer-management/customers-registration/v2/customers

4. {resource} – design rules

ENX-URI-006

{resource} based on Nbility business objects

26

4. {resource} – design rationale

To give an example of associated business objects: the Nbility model describes a strong relationship between the
objects ‘Market party’, ‘Market agreement’ and ‘Connection’. A ‘Market party’ is active on a ‘Connection’ and a
counterparty in a ‘Market agreement, as visualized’ in below picture:

27

4. {resource} – design rationale

A contracts-management API exposes the associated resources as endpoints (Nbility reference: C.6.1.3):
 https://apigateway.enexis.nl/market-contract-management/contracts-management/v1/market-agreements

 https://apigateway.enexis.nl/market-contract-management/contracts-management/v1/accounting-points

where:

 market-agreements: represents the collection of agreements recorded on a given connection

 accounting-points: the collection of allocation points for which agreement information can be retrieved. The

accounting-point is the CIM equivalent of Nbility object connections

This is possible because of the strong relationship between the two business objects as outlined by the Nbility model.

To design cohesive APIs and to be clear about the scope and responsibility only related objects exposed as resources
should be represented in the API. See the Enexis API design guidelines for further information.

This design rationale is further motivated and justified in {resource} - design literature

28

Processing resources represent activity-oriented API designs and endpoints1. A common situation in API design is the
need to go beyond the typical CRUD interaction model. For example, some APIs may need to support actions such
as submit, approve, and decline. With our somewhat limited action verbs in HTTP, how can we add this to our API?2

 A verb is allowed as an action (controller) on a resource in certain cases
 A controller resource or processing resource is an executable function on a resource
 Only allowed if the use of standard HTTP methods results in a situation that compromises the flexibility, adoption,

and/or usability of the API
 A controller resource name is a verb instead of a noun. Verb in imperative mode
 Controller names typically appear as the last segment in a URI path, with no child resources to follow them in the

hierarchy
 The HTTP method on a controller SHOULD be:

 POST for actions with side effects (state change) or actions without side effects but requiring a request body

 GET for idempotent actions without side effects

5. Processing resource

1. https://api-patterns.org/patterns/responsibility/endpointRoles/ProcessingResource
2. https://tyk.io/blog/rest-never-crud/

29

 In certain cases, it can be highly desirable to perform a complex search based on a large dataset, wildcards, or
arrays. The use of query parameters is not sufficient in this case and can lead to unnecessary complexity. When
dealing with 5 (~) query parameters or more, the application of a complex search with a POST request is required

 The OpenAPI Specification does not allow a JSON payload in combination with a GET request
 For an extensive search (complex search), a POST request is used. There is market consensus for its usage
 Explicit use of a 'search' resource can be made to avoid confusion with creating a new resource

Examples:
 POST https://apigateway.enexis.nl/capacity-planning/investment-management/v1/investment-plans/123/approve

 POST https://apigateway.enexis.nl/market-connections-management/connection-details-retrieval/v1/connections/search

The use of controllers is allowed sparingly, and they appear as the last segment in a URI path serving as an imperative verb with no
child resources

5. Processing resource

More information:
• https://restfulapi.net/resource-naming/
• https://cloud.google.com/apis/design/custom_methods
• https://gitdocumentatie.logius.nl/publicatie/api/adr/#operations

ENX-URI-007

30

 Query parameters are only allowed for the following applications:
 Filtering;
 Hypermedia controls;
 Pagination;
 Sorting;

 Query parameters should not be used for the identification of unique objects (resources)
 The names of query parameters are always case insensitive for usability purposes. However, if resource names

are used as the 'value' of a query parameter, those resource names are case sensitive
 To distinguish between ‘real’ query parameters and the more ‘steering’ or ‘meta’ parameters like expand, fields,

limit and page, a prefix should be used to prevent misinterpretation of the function of the query parameters:
_expand, _field, _limit, _sort and _page

Examples:
 https://apigateway.enexis.nl/customer-settlement/sales-orders-management/v1/sales-orders?type=unblocked

 https://apigateway.enexis.nl/market-connections-management/connection-details-retrieval/v1/connections?_limit=100&_page=1

Query parameters must be used for filtering, sorting and hypermedia and prefixed with an underscore in case of meta functionality

6. Query parameters

ENX-URI-008

31

7. Syntax principles (general)

 The URI MUST
 comply with internet standard RFC3986;

 not support file extensions;

 not end with trailing slashes;

 use lowercase notation. Exceptions are query parameters that follow the lowerCamelCase notation cf JSON payload notation;

 not contain empty path segments;

 use hyphens in case of composite terms. Also known as ‘kebab’ or ‘spinal case’;

 use underscores for meta functional query parameters;

 not use spaces: use hyphens instead;

 Not use diacritic signs for path parameters. Characters like é should be converted to e (etc.)

 not use non-standard abbreviations;

 not use unknown characters: (!, @, #, $, %, ^, &, *, etc.) should be replaced with a hyphen;

 identify resources and subresources via path parameters;

 predetermined query parameters for searching, sorting, filtering and hypermedia;

 not contain the word ‘api’ in API name or resource name;

 not contain the name of an organization, project or application in API name of resource name;

32

7. Syntax principles (recommended)

 The URI SHOULD
 be durable and long-term stable: Cool URIs don’t change;

 restrict the nesting of subresources to a maximum of three levels. Deep nesting complicates readability and best practice is to keep

the URI length under a limit of 2048 characters;

 be ‘intuïtive’ and ‘human readable’;

 pluralize resource names;

 handle controller resources and processing resources as exceptions;

 use path parameters instead of query parameters to identify a unique resource;

The URI must follow general syntax principles and should comply with recommended syntax principles

Sources:
https://nordicapis.com/10-best-practices-for-naming-api-endpoints/
https://opensource.zalando.com/restful-api-guidelines/index.html#urls
[Higginbotham 2021]
[Sloos 2020]

ENX-URI-009

33

8. Security and privacy

Description

When designing an API, it is important to ensure that the use of one or more resource keys in a URI of that API never leads to
the leakage of sensitive information1

ImplicationRationale

• The structure of resources as provided by an API must
comply with the Enexis URI conventions

• The Privacy Statement describe how certain combinations
of resource keys are allowed or not allowed, and how
replacement keys and/or encryption of resource keys can
be used (or should be used) to avoid data leaks

There are examples where the key (or combination of keys) of
one or more resources could potentially lead to the leakage of
sensitive information (e.g., a social security number used as a
key for a person). This is particularly relevant since URIs on
the endpoints of a secure connection can be stored in server
logs

An API makes resources addressable within a URI path using resource keys. The resource key serves as a unique
identification of a single resource within a (potentially large) resource collection.

From a privacy perspective, careful handling of resource keys is necessary if they can be directly linked to individuals
see Privacy Statement:

1. https://danielmiessler.com/p/sensitive-information-sent-in-the-url-over-https/

34

8. Security and privacy – URI visibility

 The mandatory use of TLS at all times ensures that URIs in the consumer-gateway-provider chain are not visible
during transit as there is an encrypted end-to-end network connection. However, the URLs are still visible at the
endpoints.

 The handling of URIs at the endpoints for internal APIs is governed by the current Enexis policy regarding
application development (reference architecture, privacy, and security policy). For external parties, the proper
handling of URIs should be documented in the relevant legal agreement.

Secure
Transport

(TLS)

API
Gateway

Secure
Transport

(TLS)
API

Provider

URI visible

URI not visible

API
Consumer

35

9. Privacy Statement

The following slides contain a statement with an addition, issued on May 10, 2021, by the Privacy
Officer of Governance and Legal Affairs at Enexis, in response to the question:

Under what conditions, based on the security aspects presented in the Privacy and Security slides,
can personal data be exchanged via the URI of APIs?

36

9. Privacy statement

Assuming that:

 when using regular personal data in the URI, the entire message (body and URI) is encrypted during
transmission;

 these data can only be viewed by the API Consumer, API Gateway, and API Provider;

 the use of personal data in the URL is only permitted if it is necessary for both the sending and receiving parties to
have access to this personal data for the performance of their tasks;

 no sensitive or special categories of personal data can be inferred from the URI; (category 2);

There is an acceptable risk for the Business in using a certain number of regular personal data in the URIs of APIs,
particularly to make the construction of APIs manageable and controllable. This includes the use of identifying data
such as:

 EAN-code;

 Customer number;

 Meter number;

 ZIP code housenumber;

 BAG (Basisregistratie Adressen en Gebouwen)

37

9. Privacy Statement – addition

Additionally, there are certain sensitive or special categories of personal data that, if disclosed, could cause harm to
the customer. These data should never appear in the URI. If it is necessary to exchange such data, they will be

transmitted exclusively in the body of the request, ensuring that they cannot be inferred from the logging either. The
list of special categories of personal data is exhaustive, namely:

 Race or ethnic origin;

 Political opinions;

 Religious or ideological beliefs;

 Membership of a trade union;

 Genetic or biometric data

 Health data*;

 Data about sexual orientation;

 BSN-number;

 Criminal data or criminal records trafrechtelijke gegevens;

* The underscored data categories definitely occur within Enexis

38

9. Privacy Statement – addition

When it comes to sensitive data, examples (non-exhaustive) include

 Fraud data;

 Financial data (both bank account number/credit card and payment data);

 Consumption data;

 Disconnection data;

All of these data categories definitely occur within Enexis.

It is not possible for Privacy to provide an exhaustive list of personal data and their respective categories. Whether
something qualifies as personal data and its sensitivity strongly depends on the context in which the data is used. In
this example, I assumed customer/connection data. For employee data, the list of sensitive data may have a different
composition. Additionally, there is an important exception. By combining certain data, new sensitive information
can be derived. The combination of an EAN code with a meter number or a postcode with a house number and
meter number should never appear in the URI. The meter number is widely used as an identifier in many processes
to verify that the customer has access to the connection. By using a combination of connection data and meter
number, it would facilitate fraud.

ENX-URI-010
In the URI, a limited set of regular personal data is allowed, but special personal data or combinations of regular personal data are
never permitted

39

It is interesting to explore in the DDD literature where examples are provided of endpoints1 with a bounded
context as part of the namespace or URI path. Below are some examples and quotes:

• [Evans 2003] p419: Of course, because each BOUNDED CONTEXT is its own name space, one structure
could be used to organize the model within one CONTEXT, while another was used in a neighboring CONTEXT,
and still another organized the CONTEXT MAP2.

{context} – design literature

1. An API endpoint is the provider-side end of a communication channel and a specification of where the API endpoints are located so that APIs can be accessed by
API clients (also called API consumers). Each endpoint thus must have a unique address such as a Uniform Resource Locator (URL), as commonly used on the
World-Wide Web (WWW), in HTTP-based SOAP, or in RESTful HTTP. Each API endpoint belongs to an API; one API can have different endpoints:
http://eprints.cs.univie.ac.at/7194/1/patterns-on-designing-api-endpoint-operations-proceeding-version5.pdf

2. In this case, ‘namespace’ refers to a C# namespace or a package in Java

• [Millett 2015] p86: A closer inspection, as shown in Figure 6-
11, shows the product concept existing in two models but
defined by the context that it is within.

• [Millett 2015] p274: To build the API that produces the
Account Management entry point, you need to start by
adding a new ASP.NET application to the solution called
AccountManagement.EntryPoint. This follows the convention
of naming API projects based on the format {bounded
context}.{Resource}.

40

• [Millett 2015] p273: When clients want to
interact with a REST API, they start by
requesting the entry point resource. From
then on, they mostly just follow links in the
hypermedia that is returned. Choosing
where to locate your entry point(s) has a
number of considerations that you should
take into account. For instance, the design
in Figure 13-10 chooses to have a single
entry point per‐bounded context. But you
could have a single entry point for the
entire system or go more fine‐grained and
have an entry point per top‐level resource.
Ultimately, you have to decide on a
per‐project basis how much of the system
you want to expose via entry point
resources1.

{context} – design literature

41

{context} – design literature

• [Millett 2015] p274: Designing an entry point
involves identifying the initial resources and
transitions that should be available to
consumers of the API. The Account
Management bounded context’s entry
point will be the list of top‐level resources.
In this example, that is just the Accounts
resource. From the Accounts resource,
hypermedia will link to individual accounts,
and from individual accounts to details of
those accounts, exposed as child resources,
such as its followers1.

1. In this example, the bounded context is annotated as top-level resource in the API endpoint. This might be too course-grained, since a bounded
context is not a resource by itself, but more a linguistic boundary of a resource. The overall bounded context as top-level resource instead of the
aggregate root might result in complex and large endpoints. [Zimmermann 2021a]: ‘Instead of an aggregate, Bounded Context as API Endpoints is
a practice that offers bounded contexts as composite units offered as API endpoints. But this often is much too coarse-grained leading to too large
and complex API endpoints’. Source: https://eprints.cs.univie.ac.at/6948/1/europlop21-s16-camera-ready2.pdf

42

{context} – design literature

Except in the canonical DDD literature, there are internet resources in which the inclusion of the bounded context
in the URI path of the API endpoint is discussed:

• If we also build our microservices to match these bounded contexts, we will inevitably end up with duplicated
aggregate roots, which is bad REST juju as you can’t easily shadow RESTful endpoints without making things
confusing or making your API Gateway management software angry. So, how do we break up microservices
with similarly named aggregate roots? The answer is fairly simple, you use a similar method to how you may
implement versioning a RESTful API e.g.:

sales.mybusiness.com/v1/Customer
customer-care.mybusiness.com/v1/Customer
or
mybusiness.com/sales/v1/Customer
mybusiness.com/customer-care/v1/Customer

• Modern API Management Gateway software should be fine with adopting this model, but as a business, you'll
have to agree on how you manage these "Multiple Canonical Models", which is another topic entirely1.

1. https://www.linkedin.com/pulse/architectural-mistakes-i-have-made-microservices-apis-jeff-watkins this is not only theoretically well defined, but also
workable and executable in a ‘disciplined environment’:
https://www.linkedin.com/feed/update/urn:li:article:7478996722983439236/?commentUrn=urn%3Ali%3Acomment%3A%28article%3A74789967229834
39236%2C6928992793684025344%29

43

{context} – design literature

More internet resources in which bounded contexts as part of the URI is being discussed:

• https://softwareengineering.stackexchange.com/questions/279833/partitioning-rest-api-resources-into-areas-based-on-business-domains

• https://microservice-api-patterns.org/cheatsheet (identify endpoint candidates)

• https://itlibrium.com/en/blog/how-to-use-csharp-projects-and-namespaces-in-a-ddd-project (company -> bounded context -> modules)

• https://softwareengineering.stackexchange.com/questions/317423/ubiquitous-language-and-maturity-level-in-rest-api (example

http://yourdomain/<BoundedContextName>/<ApplicationServiceName>)

• https://eprints.cs.univie.ac.at/6780/2/api_ddd_grey_literature_based_gt.pdf (table 1)

• https://www.slideshare.net/launchany/designing-apis-and-microservices-using-domaindriven-design (slide 31)

• https://alok-mishra.com/2021/06/30/domain-driven-design-ddd-core-concepts-explained/ (Namespace /api/{my-domain}/{context})

 Conclusion: bounded context as part of the path component in the URI is a recognizable concept in

both DDD literature and in DDD-related discussions on the internet

44

{resource} – design literature

Aggregates, along with Entities, Value Objects, Services, and Repositories, are the tactical building blocks used to
design a domain model of a bounded context. The applications and properties of these building blocks are extensively
described in the DDD literature. Vaughn Vernon devotes almost 200 pages to the description of Entities, Value
Objects, and Aggregates. A recent explanation of Aggregates can be found in Thomas Ploch's presentation (DDD
Europe, Amstelveen 2022)1.

In the DDD literature and on the internet, there is consensus regarding the correlation between REST resources and
bounded context's aggregates. We use the term correlation here because aggregates are part of the implementation
domain model of the bounded context, formulated in the Ubiquitous Language, while REST resources are part of the
integration model, formulated in the Published Language. Aggregates belong to the business domain, and REST
resources belong to the integration domain, and by definition are decoupled to ensure flexibility in domain models and
stability in REST interfaces. Here are some quotes about aggregates and resources:

• As an Aggregate abstracts the implementation details of a number of related Entities and other DDD model elements, it naturally serves
as an Identified Interface Element. Practitioners agree that Aggregate Roots are a good starting point for API Resources2;

• Another thing to keep in mind is that Aggregates usually either succeed or fail as a whole. They often form the boundaries of
transactionality. That is why Aggregates in particular are good first candidates for microservices3;

• Aggregations are naturally assigned to resources in REST4;

1. https://slides.com/tploch/what-is-a-ddd-aggregate
2. https://zenodo.org/record/4493865/files/api_ddd_grey_literature_based_gt.pdf
3. https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Native-Architecture/Identify-Entities-And-Aggregates/
4. https://docs.microsoft.com/nl-nl/azure/architecture/microservices/design/api-design

45

{resource} – design literature

• RESTful HTTP provides methods, primarily GET, PUT, POST, and DELETE. Even though these may seem to support only CRUD
operations, using a little imagination allows us to actually categorize operations with explicit intent within one of the four method
categories. For example, GET can be used to categorize various kinds of query operations, and PUT can be used to encapsulate a
command operation that executes on an Aggregate (10)1;

• Yet each resource is built from, for example, one or more Aggregates belonging to the Core Domain2;
• Aggregates map nicely to REST resources3;
• Aggregates and Entities become Resource APIs4;
• Aggregates supply API resources (or responsibilities) of service endpoints5;
• Do not mechanically turn all application domain (micro-)layer artifacts such as Domain-Driven Design (DDD) pattern instances or facades

into (micro-)services, but follow a recognized or homegrown identification method. For instance, the DDD Bounded Context is seen to
form an upper boundary for microservice size, while Aggregates serve as lower boundary6;

• Aggregates supply API resources (or responsibilities) of service endpoints6;
• According to our practitioner sources, Entities as API Endpoints can lead to problems related to API complexity, data consistency, chatty

APIs, performance and scalability isses, API understandability, API maintainability, and API evolvability7;
• So a ‘service api’, can be thought of as a set of operations, each being a command to an aggregate. See the /reserve-seats example8;

1. [Vernon 2013] p405
2. [Vernon 2013] p145
3. https://youtu.be/NdZqeAAIHzc?t=2053
4. https://www.ibm.com/garage/method/practices/code/domain-driven-design/
5. https://www.microservice-api-patterns.org/ZIO-FromDDDToMAPIsQS2020v10p.pdf (slide 36)
6. https://github.com/socadk/design-practice-repository/blob/master/artifact-templates/SDPR-RefinedEndpointList.md
7. https://eprints.cs.univie.ac.at/6948/1/europlop21-s16-camera-ready2.pdf
8. https://medium.com/@unmeshvjoshi/aggregate-oriented-microservices-d314eb04f2b1

46

{resource} – design literature

Next to REST resources, also business objects (as presented by Nbility) can be compared to aggregates in Domain-
Driven Design (DDD). While the terminology may vary, the concept of grouping related objects together into cohesive
units with defined boundaries exists in both cases.

Business objects align with aggregates and are objects that represent concepts, entities, or elements within the
business domain. These objects encapsulate behavior, maintain state, and collaborate to fulfill business requirements.
Business objects are often organized into higher-level structures or units to handle complex business operations or
processes1.

While the term business object is more generic and can encompass a wider range of objects within a business
domain, the concept aligns with the idea of aggregates in DDD. Both concepts aim to group related objects together,
define boundaries, and encapsulate behavior to achieve business goals and maintain consistency.

 Conclusion: the alignment of business objects, DDD aggregates and REST resources is a recognizable

concept in both DDD literature and in DDD-related discussions on the internet

1. [Millett 2015] p53, p465

47

{API} – design literature

The concept of the Interface Bounded Context, which refers to a separate context with own interface model,
dedicated team, and language with integration capabilities, is already introduced in Vaughn Vernon's book1:

• Tempting though it may be, it is not advisable to directly expose a domain model via RESTful HTTP. This approach often leads to
system interfaces that are more brittle than they need to be, as each change in the domain model is directly reflected in the system
interface. There are two alternative approaches for combining DDD and RESTful HTTP. The first approach is to create a separate
Bounded Context for the system’s interface layer and use appropriate strategies to access the actual Core Domain from the
system’s interface model. This can be deemed a classic approach, as it views the system’s interface as a cohesive whole that is
simply exposed using resource abstractions instead of services or remote interfaces

An independent and separate integration model, decoupled from a bounded context implementation model,
provides the advantage of stability in the interface layer and flexibility of the bounded context domain model:

• Decoupling the bounded context’s implementation and integration models gives the upstream bounded context the freedom to
evolve its implementation without affecting the downstream contexts2

• When using DDD, the REST API should always be separated from the domain model. The main reason for this is simplification -
you don't want to leak the complexity of the domain model through the API to the clients3

• It is very important to distinguish between resources in REST API and domain entities in a domain driven design. Domain driven
design applies to the implementation side of things (including API implementation) while resources in REST API drive the API
design and contract4

1. [Vernon 2013] p145
2. [Khononov 2022] p55
3. https://stackoverflow.com/questions/33970716/why-the-domain-model-should-not-be-used-as-resources-in-rest-api
4. https://nhpatt.com/bounded-context-in-apis/

48

{API} – design literature

In recent literature, this concept is further developed, where not only model decoupling is advocated but also
language decoupling: changes in the Ubiquitous Language of a bounded context will not impact the Open Host
Service being offered and formulated in the Published Language:

• The supplier’s public interface is not intended to conform to its ubiquitous language. Instead, it is intended to expose a protocol
convenient for the consumers, expressed in an integration-oriented language. As such, the public protocol is called the published
language1

It is important to mention that the Open Host service represents an integration model that simplifies the underlying
bounded context domain model, intended for contexts that do not want to be hindered by the complexity of the
underlying bounded context domain model. Here are some quotes:

• A public API is exposed via a contract with a simplified model whose language is published for all to understand2;
• Second, the published language exposes a more restrained model. It is designed around integration needs. It encapsulates the

complexity of the implementation that is not relevant to the service’s consumers. For example, it can expose less data and in a more
convenient model for consumers3

A variant of the Interface Bounded Context is Interchange Context4 in which the anticorruption layer acts as an
integration-specific bounded context. Team ownership however is not entirely clear5.

1. [Khononov 2022] p88
2. [Millett 2015] p98
3. [Khononov 2022] p229
4. [Khononov 2022] p193
5. https://medium.com/nick-tune-tech-strategy-blog/gateway-interchange-contexts-899696e67848

49

{API} – design literature

The term 'Interface Bounded Context' is explicitly mentioned in publications by Olaf Zimmermann1:

• …as some APIs are based on bounded contexts, especially if dedicated interface bounded contexts are designed with the purpose
of creating APIs from them

• Interface Bounded Context: Another option is to design an explicit bounded context that contains the interface to be exposed in the
API. This bounded context is designated as an Interface Bounded Context in the domain model design

• Introduce a dedicated API view on selected parts of the domain model to establish a published language that exposes parts of the
ubiqitous language of the domain in a controlled, managed fashion. Mark the domain model elements exposed to the API clearly as
API elements

The interface bounded context represents a nested child bounded context2 as part of the top-level parent bounded
context. This relationship can be seen as a hierarchical parent - child construction. The parent bounded context
defines the ‘outer’ scope of the context and defines team ownership and is formulated in the Ubiquitous
Language. The ‘inner’ child interface bounded context scopes a subset of the ‘outer’ scope of the parent context
for interfacing purposes and is formulated in the Published Language.

The {API} path of this URI strategy maps to the interface bounded context concept. It is named in the published
language because it needs to be understood by other bounded contexts.

1. https://eprints.cs.univie.ac.at/6948/1/europlop21-s16-camera-ready2.pdf
2. [Newman 2015] p73

50

{API} – design literature

Furthermore the API name is part of the path component of the URI and since the path component should
contain data organized in a hiërarchical form, the parent – child construction of top-level bounded context and
interface bounded context seems to meet this requirement quite well. To depict the anatomy visually:

Bounded context market-contract-managment

Interface bounded context contracts-management

apigateway.enexis.nl/market-contract-management/contracts-management/v1/market-agreements

Published language

Ubiquitous language

 Conclusion: the API name identifies the interface bounded context as a separate bounded context

nested hiërarchically within the parent top-level bounded context

OHS

Aggregate

51

Appendix A - DDD: Bounded Context examples

Bron (Object)Bounded
Context

• [Evans 2003]: 16 (Passenger)
• [Millett 2015]: 86
• [Evans 2003]: 307

Booking

• [Khononov 2022]: 91 (with Context map)
• [Khononov 2022]: 238

Billing

• [Millett 2015]: 227
• [Khononov 2022]: 238

Catalogue

• [Millett 2015]: 100 (Customer model shared kernel with BC Commerce)
• [Vernon 2013]: 190
• [Zimarev 2019]: 410
• [Khononov 2022]: 91 (with context map)
• [Khononov 2022]: 238
• [Khononov 2022]: 321
• [Khononov 2022]: 70

CRM

• [Khononov 2022]: 76 (Ticket)
• Fowler: https://martinfowler.com/bliki/BoundedContext.html (Product, Customer)

Customer
Service

• [Khononov 2022]: 96 (Employee model as shared kernel with BC Payroll)HR

• [Khononov 2022]: 91 (with Context map)
• [Vernon 2013]: 74

Identity &
Access

• [Millett 2015]: 81 (Product)
• [Vernon 2013]: 69
• [Zimarev 2019]: 410

Inventory

52

Appendix A - DDD: Bounded Context examples

Bron (Object)Bounded
Context

• TADD: 16 (Subscriber)
• [Millett 2015]: 81 (Product)
• [Khononov 2022]: 64 (Lead)
• [Khononov 2022]: 91 (with Context map)

Marketing

• [Millett 2015]: 88Ordering

• [Millett 2017]: 20 (Employee model as shared kernel with BC Empoyee Management)
• [Millett 2015]: 96 (Employee model as shared kernel with BC Payroll)

Payroll

• [Millett 2015]: 98
• [Millett 2015]: 81 (Product)

Procurement

• [Millett 2015]: 660
• [Millett 2015]: 88
• [Khononov 2022]: 300 (Lead, Campaign)

Promotions

• [Millett 2015]: 81 (Product)
• [Millett 2015]: 88
• [Millett 2015]: 227

Pricing

• [Vernon 2017]: 79Purchasing

• [Millett 2017]: (Lead)
• [Millett 2015]: 76 (Ticket)
• [Zimarev 2019]: 410
• [Khononov 2022]: 64 (Lead)
• [Khononov 2022]: 300 (Lead, Campaign)
• Fowler: https://martinfowler.com/bliki/BoundedContext.html (Product, Customer)

Sales

• [Millett 2015]: 86Shipping

53

Appendix B - URIs, URLs and URNs

1. https://danielmiessler.com/p/difference-between-uri-url

This document is called ‘URI strategy’ and it’s good to explain the differences between URIs, URLs and URNs1. These
concepts can be defined as follows:

 A Uniform Resource Identifier (URI) is a string of characters that uniquely identify a name or a resource on the
internet. A URI identifies a resource by name, location, or both. URIs have two specializations known as Uniform
Resource Locator (URL), and Uniform Resource Name (URN);

 A Uniform Resource Locator (URL) is a type of URI that specifies not only a resource, but how to reach it on the
internet—like http://, ftp://, or mailto://;

 A Uniform Resource Name (URN) is a type of URI that uses the specific naming scheme of urn: — like
urn:isbn:0-486-27557-4 or urn:isbn:0-395-36341-1;

54

Appendix B - URIs, URLs and URNs

1. [Higginbotham 2021] p178
2. In REST literature the URI is the very often used term in association with endpoint design strategy

So all URLs are URIs, but not all URIs are URLs. An URL is a type of URI.

An XML namespace can be identified by some Uniform Resource Identifier (URI), either a Uniform Resource Locator
(URL), or a Uniform Resource Name (URN). At Enexis we have chosen for the URN notation in the ECDM framework:

targetNamespace="urn:xenexis:ecdm:3010.01.01:DocumentAdministration:FraudDossierManagement:1:Standard“

A message broker topic is typically represented as an URI, because the focus is on the identification and
categorization of the topic rather than its location on the web1.

Since this document aims at a design strategy for both URLs and URNs the overall term URI is used2.

55

Appendix C - RFC3986

1. https://datatracker.ietf.org/doc/html/rfc3986

RFC3986 serves as the primary reference for the generic URI syntax1. It defines the basic components of a
URI, including the scheme, authority, path, query, and fragment. It also covers the rules for character
encoding, escaping reserved characters, and resolving relative references within an URI:

The path component in RFC3986 represents the location or hierarchy of the resource within the URI's scheme
and authority, providing the necessary context to identify and access the specific resource. Including an API
name as part of the path component is a common practice in RESTful API design.

56

Appendix C - RFC 3986

The RFC provides guidelines for URI syntax, and it allows for flexibility in structuring the path component. For
example, consider the following URI:

https://example.com/api/v1/users

In this URI, the api segment is included as part of the path to indicate the API, followed by the version (v1) and
the resource being accessed (users). This approach helps in organizing the API endpoints and differentiating
them from other resources on the server.

As long as the API name and other segments in the path component adhere to the
character restrictions defined in RFC3986 and do not conflict with reserved characters
or reserved meanings, it is generally considered compliant with the RFC.
In {API} - design literature is stated that the API name component is in fact a separate
interface bounded context, nested in the parent bounded context, persevering
the hierarchy constraint of the path component in RFC3986.

57

In the energy sector (EDSN) the URI structure of community APIs has been determined on the hiërarchial levels of the
Nbility business objects (BOMs):

 https://api.cmf.energysector.nl (base URL of all cmf APIs)

 /{toplevel} - (Nbility BOM level1)

 /{sublevel1} - (Nbility BOM level2)

 /{sublevel2} - (Nbility BOM level3)

 /{API} - (API name)

 /{version} - (major version of API)

 /{resource} - (resource, collectie or register)
Examples:

 https://api.cmf.energysector.nl/energy-market/market-participant/market-agreement/contract-management/v1/market-agreements

 https://api.cmf.energysector.nl/energy-market/connection/facility/power-generating-modules-management/v1/powergeneratingmodules

Appendix D - Sector community URI strategy

Base URL {API name} {version} {resource}{BOM level1} {BOM level2} {BOM level3}

58

Appendix D - Sector community URI strategy

1. https://www.tech-invite.com/y35/tinv-ietf-rfc-3986-2.html#e-3-3

Energy market

Market participant

Market party

Market case

Energy market

Market agreement

https://api.cmf.energysector.nl/energy-market/market-participant/market-agreement/contract-management/v1/market-agreements

This approach is compliant with RFC3986 and
supports the hiërarchy definition of the path
component of the URI1, however it does not apply
the concept of bounded contexts as linguistic
boundaries for business objectsmodels (resources)
and ownership boundaries for teams.

Furthermore it restricts the API design in general, as it is focused on one
particular business object model (resource) and leaves little room for additional
associated resources in the API, which might be required depending on the use
case.

59

The name of an API is a combination of BOM level 3 and Nbility business level 3 where possible. In the overview
below a fragment of the API namings for the market domain are provided:

https://api.cmf.energysector.nl/energy-market/market-participant/market-agreement/contract-management/v1/market-agreements

Appendix D - Sector community URI strategy

{API name}

<name API> = BOM level3 + business capability level3BOM level 3Business capability level3Level

market-participant-managementmarket-participantMaintain relations with market parties6.1.1

market-case-managementmarket-caseHandle questions of market parties6.1.2

contract-managementmarket-agreementClose contracts for market services6.1.3

energy-market-managementenergy-marketManage energy markets6.1.4

connection-managementconnectionManage energy grid connections6.2.1

facility-managementfacilityManage installations behind connections6.2.2

congestion-area-managementcongestion-areaManage congestion areas6.2.3

market-request-managementmarket-requestExecute energy market procedures6.3.1

energy-schedule-communicationenergy-scheduleExchange energy predictions6.3.2

energy-exchange-quantificationenergy-exchangeDetermine energy exchange6.3.3

market-invoice-assignmentmarket-invoiceAllocate energy exchange to market parties6.3.4

regulation-demand-notificationregulation-demandCommunicate upward or downward regulation demand6.3.5

regulation-offer-managementregulation-offerManage upward or downward regulation bids6.3.6

60

The API name is structured according to the naming covention overview below. Please note that this is still in an
expirimental phase. Motivation however is clear: by using predetermined keywords in the API naming, the
discoverablity, uniformity and architecure role of the API becomes clear:

Examples:
 https://api.cmf.energysector.nl/energy-market/market-participant/market-agreement/contract-management/v1/market-agreements

 https://api.cmf.energysector.nl/energy-market/connection/facility/power-generating-modules-management/v1/powergeneratingmodules

 https://api.cmf.energysector.nl/energy-market/ market-process/energy-exchange/measurement-series-notification/v1/measurement-series

Appendix D - Sector community URI strategy

{API name}

DescriptionKeyword

… if the API impacts the total life cycle of a resource (all CRUD operations)management

… if the API only retrieves information (GET, POST query)retrieval

… if the API assigns something to a party (POST)assignment

… if the API performs calculations or determines something numericallyquantification

… if the API publishes an event or informationnotification

… if the API exchanges information bi-directional, without mutations (question / answer)communication

61

Appendix E: Message Broker Topics

Message broker topics1 can be named after bounded contexts in an event-driven architecture. Naming streaming
topics and message queues after bounded contexts can help maintain a clear separation and organization of events
based on the different parts of the system they belong to2.

This URI strategy can very well be applied to a general naming convention for queues and topics. When we
consider the current Enexis naming conventions:

• AMQ queue3: pattern <team>.<ECDM business function>.<version> - example: csti.document-managent.getDocument.v1
• Kafka topic4: pattern <app/dis-numb er-service-now>_<stream-name> - example: APP7699_MeterReadingValues

we observe that teams, applications and functional message names are part of the naming pattern. Based on the
URI strategy of this document the naming convention could be:

pattern: <context>.<resource>

Where <context> adheres to design rule ENX-URI-001 and represents teams and applications, whereas <resource>
adheres to ENX-URI-006 and denotes events, commands, or other types of data relevant to the downstream
bounded contexts.

1. [Higginbotham 2021] p168 for further explanation on the terminology
2. https://levelup.gitconnected.com/kafka-for-engineers-975feaea6067
3. https://enexis.sharepoint.com/sites/WIKI-010520183/Wiki%20Paginas/AMQ%20Queues%20Topic%20Destinations%20and%20Authorization.aspx
4. https://enexis.sharepoint.com/sites/WIKI-010520183/Wiki%20Paginas/035.%20Naming%20Conventions%20(Axual%20Streaming).aspx

62

Appendix F: Dutch government URI examples

URIOrgAPI

https://api.bag.kadaster.nl/esd/huidigebevragingen/v1/KadasterBAG API Huidige Bevragingen1

https://api.bag.kadaster.nl/lvbag/individuelebevragingen/v2KadasterBAG API Individuele Bevragingen2

https://api.kadaster.nl/tms/v1/terugmeldingenKadasterTerugmelding API3

https://brt.basisregistraties.overheid.nl/api/v2KadasterBRT API4

https://www.haalcentraal.nl/haalcentraal/api/brpVNGBevraging Ingeschreven Persoon 5

https://autorisaties-api.vng.cloud/api/v1VNGAuthorisatie component6

https://service.omgevingswet.overheid.nl/publiek/omgevingsdocumenten/api/downloaden/v1DSOOmgevingsdocument downloaden7

https://service.pre.omgevingswet.overheid.nl/publiek/omgevingsdocumenten/api/presenteren/v7DSOOmgevingsdocument presenteren8

https://oinregister.logius.nl/api/v1LogiusCentrale OIN Raadpleegvoorziening9

1. Basisregistratie Adressen en Gebouwen: https://developer.overheid.nl/apis/kadaster-bag-current
2. Basisregistratie Adressen en Gebouwen: https://developer.overheid.nl/apis/kadaster-bag-individual
3. Terugmelding: https://developer.overheid.nl/apis/kadaster-terugmeldingen
4. Basisregistratie Topografie: https://developer.overheid.nl/apis/kadaster-brt
5. https://developer.overheid.nl/apis/vng-bevraging-ingeschreven-persoon
6. https://developer.overheid.nl/apis/vng-ac
7. https://developer.overheid.nl/apis/dso-omgevingsdocument-downloaden
8. https://developer.overheid.nl/apis/dso-omgevingsdocument-presenteren
9. https://developer.overheid.nl/apis/logius-cor

63

Bibliography

 [Biehl 2015] M. Biehl, API Architecture: The Big Picture for Building APIs. API University Series, 2015

 [Evans 2003] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2003;

 [Khononov 2022] V. Khononov, Learning Domain-Driven Design: Aligning Software Architecture and Business Strategy.

O’Reilly 2022

 [Higginbotham 2021] J. Higginbotham, Principles of Web API Design: Delivering Value with APIs and Microservices. Addison-

Wesley, 2021

 [Millett 2015] S. Millett & N. Tune, Patterns, Principles, and Practices of Domain-Driven Design. John Wiley & Sons, Inc, 2015

 [Millett 2017] S. Millett, The Anatomy of of Domain-Driven Design. DDD Europe 2022

 [Newman 2015] S.Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly 2015

 [Sloos 2020] T. Sloos, DSO URI strategie. Digitaal Stelsel Omgevingswet, 2020

 [Vernon 2013] V. Vernon, Implementing Domain-Driven Design. Addison-Wesley, 2013

 [Zimarev 2019] A. Zimarev, Hands-On Domain-Driven Design with .NET Core. Packt Publishing 2019

 [Zimmermann 2021] O. Zimmermann, Patterns on Deriving APIs and their Endpoints from Domain Models. EuroPLoP ’21,

Irsee, Germany July, 2021

 [Zimmermann 2022] O. Zimmermann, M. Stocker, D. Lübke, U. Zdun, C. Pautasso, Patterns for API Design: Simplifying

Integration with Loosely Coupled Message Exchanges. Addison-Wesley, 2022

SAMEN WERKEN WE AAN EEN
BETROUWBARE EN DUURZAME
ENERGIEVOORZIENING
VOOR VANDAAG ÉN VOOR DE
TOEKOMST.

For more information, please contact:
CST-Integratie@enexis.nl

