

Build APIs You Won’t Hate
Everyone and their dog wants an API, so you should probably learn
how to build them.

Phil Sturgeon

This book is for sale at http://leanpub.com/build-apis-you-wont-hate

This version was published on 2014-05-12

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

©2013 - 2014 Phil Sturgeon

http://leanpub.com/build-apis-you-wont-hate
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Phil Sturgeon by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought @philsturgeon’s book about APIs because he said if I didn’t he would hurt me:
http://bit.ly/apisyouwonthate

The suggested hashtag for this book is #apisyouwonthate.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#apisyouwonthate

http://twitter.com
https://twitter.com/search?q=%23apisyouwonthate
https://twitter.com/search?q=%23apisyouwonthate

Also By Phil Sturgeon
Desenvolvendo APIs que você não odiará

PHP: The ”Right” Way

Catapult into PyroCMS

Nefret Etmeyeceğiniz Uygulama Programlama Arayüzleri (API) İnşa Edin

Crea API che non odierai

http://leanpub.com/u/philsturgeon
http://leanpub.com/desenvolvendo-apis
http://leanpub.com/phptherightway
http://leanpub.com/catapultintopyrocms
http://leanpub.com/build-apis-you-wont-hate-tr
http://leanpub.com/crea-api-che-non-odierai

This book has been a social effort. I have been writing this based on my experiences building APIs and using
various technologies connected with that process, but I am not deluded enough to think I know everything.

This is by no means a complete list, but I have to thank the following people for their contributions:

Alex Bilbie - @alexbilbie Andy Russell - @andymrussell Ben Corlett - @ben_corlett Mike Griffin -
@griffinmike

Contents

Introduction . i

Sample Code . ii

1 Useful Database Seeding . 1
1.1 Introduction . 1
1.2 Introduction to Database Seeding . 1
1.3 Building Seeders . 2
1.4 That’s about it . 4
1.5 Secondary Data . 6
1.6 When to run this? . 9

2 Planning and Creating Endpoints . 10
2.1 Functional Requirements . 10
2.2 Endpoint Theory . 12
2.3 Planning Endpoints . 16

3 Input and Output Theory . 19
3.1 Introduction . 19
3.2 Requests . 19
3.3 Responses . 20
3.4 Supporting Formats . 21
3.5 Content Structure . 24

4 Status Codes, Errors and Messages . 29
4.1 Introduction . 29
4.2 HTTP Status Codes . 29
4.3 Error Codes and Error Messages . 30
4.4 Error or Errors . 33
4.5 Common Pitfalls . 33

5 Endpoint Testing . 34
5.1 Introduction . 34
5.2 Concepts & Tools . 34
5.3 Setup . 34
5.4 Initialise . 35
5.5 Features . 36

CONTENTS

5.6 Scenarios . 36
5.7 Prepping Behat . 38
5.8 Running Behat . 38

6 Outputting Data . 40
6.1 Introduction . 40
6.2 The Direct Approach . 41
6.3 Transformations with Fractal . 44
6.4 Hiding Schema Updates . 49
6.5 Outputting Errors . 50
6.6 Testing this Output . 53
6.7 Homework . 55

7 Data Relationships . 56
7.1 Introduction . 56
7.2 Sub-Resources . 56
7.3 Foreign Key Arrays . 57
7.4 Compound Documents (a.k.a Side-Loading) . 58
7.5 Embedded Documents (a.k.a Nesting) . 58

8 Debugging . 66
8.1 Introduction . 66
8.2 Command-line Debugging . 66
8.3 Browser Debugging . 66
8.4 Network Debugging . 72

9 Authentication . 77
9.1 Introduction . 77
9.2 When is Authentication Useful? . 77
9.3 Different Approaches to Authentication . 78
9.4 Implementing an OAuth 2.0 Server . 84
9.5 Where the OAuth 2.0 Server Lives . 85
9.6 Understanding OAuth 2.0 Grant Types . 86

10 Pagination . 90
10.1 Introduction . 90
10.2 Paginators . 91
10.3 Offsets and Cursors . 93

11 Documentation . 97
11.1 Introduction . 97
11.2 Types of Documentation . 97
11.3 Picking a Tool . 99
11.4 Setting up API Blueprint and Aglio . 99
11.5 Learning API Blueprint Syntax . 101
11.6 Further Reading . 109

CONTENTS

12 HATEOAS . 111
12.1 Introduction . 111
12.2 Content Negotiation . 111
12.3 Hypermedia Controls . 114

13 API Versioning . 121
13.1 Introduction . 121
13.2 Different Approaches to API Versioning . 121
13.3 Ask Your Users . 130

Conclusion . 132

Further Reading . 133

Introduction
I’ve been building APIs for a long time now and it is becoming ever more common for server-side developer
thanks to the rise of front-end JavaScript frameworks, iPhone applications and API-centric architectures. On
one hand you’re just grabbing stuff from a data source and shoving it out as JSON, but surviving changes in
business logic, database schema updates, new features or deprecated endpoints, etc gets super difficult.

I found most resources out there to be horribly lacking or specifically aimed at one single framework. Many
tutorials and books use apples and pears examples which are not concrete enough, or talk like listing /users
and /users/1 are the only endpoints you will ever need. I’ve spent the last year working at a company called
Kapture where my primary function has been to inherit, rebuild, maintain and further develop a fairly large
API with many different endpoints exposing a lot of different use-cases.

The API in question was v2 when I joined the company and written in FuelPHP, utilizing a now deprecated
ORM which had been hacked to death by the original developer. Kapture was in the process of rebuilding its
iPhone application to implement new functionality, so I used this as an opportunity to delete that mess and
build v3 in Laravel 4, leveraging its simple (initially Symfony-based) Routing, Database Migrations, Schema,
Seeding, etc. Now we are doing the same for v4 but no rewrite was required this time, even though we have
some different functionality the v3 repo was forked to a new one for v4 and both are being actively developed
and living side-by-side on the same “API” servers.

By passing on some best practices and general good advice you can hit the ground running if you
are new to API development. On the flip side, by recounting some horror stories (and how they were
overcome/avoided/averted) you can hopefully avoid a lot of the pitfalls I either fell into, or nearly fell into,
or saw others fall into. This book will discuss the theory of designing and building APIs in any language or
framework. This theory will be applied in examples built mostly in PHP, with some Ruby and Python too.
The book will not be too code-heavy regardless, as reading code is no fun.

By the end of this book, you will have built an API that can handle create, read, update, delete, listing,
searching and everything else a good RESTful API needs to do. Some of the more advanced topics covered
here are endpoint testing, debugging, embedding/nesting data objects in a consistent and scalable manner,
paginating responses (including embedded objects) and HATEOAS links.

Sample Code
Throughout this book I will refer to source code which exists on a GitHub repo, which can be downloaded in
a few ways.

a) You can clone it:

1 $ git clone git@github.com:philsturgeon/build-apis-you-wont-hate.git

b) Browse around it:

https://github.com/philsturgeon/build-apis-you-wont-hate

c) Download it as a .zip file:

http://bit.ly/apisyouwonthate-zip

This contains a few bits and bobs that will save you from copying and pasting things out of the ebook, which
would probably be horrendous.

The book will assume you place the contents in ∼/apisyouwonthate, so if you put it somewhere else update
the path in the examples.

1 Useful Database Seeding

1.1 Introduction

The first step to creating any sort of application is creating the database. Whether you are using some sort of
relational platform, MongoDB, Riak, or whatever, you will need a vague idea of how your data is going to be
stored.

For relational databases it is very likely you will start off your planning with an entity-relationship diagram
and for document based databases such as MongoDB, CouchDB or ElasticSearch you will just let your
application magically build a schema, but either way you need to create a plan - even if it is on a napkin. This
book will assume a traditional relational database is storing your data but the principles are easily adapted
for NoSQL systems too.

This chapter assumes you have already got a database designed and built. This chapter skips the “planning a
database” section because there are plenty of other books on that already.

1.2 Introduction to Database Seeding

With a database schema designed and implemented, the next step is to store some data. Instead of entering
your real data, it is far easier to use “dummy data” to test if the schema is appropriate for your API application.
This brings the added benefit of letting you ditch the database and try again without worrying about
maintaining the data.

The process of populating a database is known as “seeding”.

This data could be:

• test users
• content entries with a bunch of comments
• fake locations available for check-in
• fake notifications to display in an iPhone app (one of each type)
• credit-card payments at various stages of processing - with some complete, some half done and some
super-fraudulent looking ones

The process of creating seeding scripts means you don’t need to waste time creating this manually over and
over again. Ultimately, the more processes you can automate during the development of your API, the more
time you have to consider the intricacies of your applications which need much more consideration.

Dummy data is necessary for realistic acceptance testing, getting freelancers/new hires up to speed with useful
content, keeping real customer data private to those outside your company, and avoiding the temptation to
copy live data over to your development environments.

Useful Database Seeding 2

Why is using production data in development bad?

Have you ever been writing a script that sends out emails and used some dummy copy while you’re building
it? Ever used some cheekywords in that content? Ever accidentally sent that email out to 10,000 real customers
email addresses? Ever been fired for losing a company over £200,000?

I haven’t, but I know a guy that has. Don’t be that guy.

What data should you use?

Garbage! Use absolute nonsense for your development database, but nonsense of the correct data type, size,
and format. That can be donewith a fun little library called Faker¹ by François Zaninotto² which is a wonderful
little library that can essentially bullshit for Queen and country.

1.3 Building Seeders

Kapture, the company I work for, uses the Laravel framework which has the joys of having Database Seeding³
baked in. This is essentially a tarted up task which almost any modern PHP framework will have (or bloody
well should do) so the principles are applicable to all.

Break your Database Seeders down into logical groupings. This doesn’t need to be “one seeder-per-table” but
it can be. The reason I don’t try to stick to that rule is that sometimes your data needs to be built at the same
time as other types of data, so for us Users are created in the same “seeder” as their settings, OAuth tokens,
and friendship data is made. Putting that stuff into multiple seeders purely to keep things tidy would be an
exercise in futility, and slow everything down for no reason.

In this chapter I will use, as an example, a check-in application. The application handles “users” and tracks
their “check-ins” into “merchants” (or “venues”). “Merchants” also provide “campaigns” (or “opportunities”).

So, this is a drastically simplified version of our user seeder all in one go, ignoring the Laravel specific structure.
If you are using Laravel 4, just shove this in your run() method.

Creating a user with Faker and Eloquent ORM

1 $faker = Faker\Factory::create();

2

3 for ($i = 0; $i < Config::get('seeding.users'); $i++) {

4

5 $user = User::create([

6 'name' => $faker->name,

7 'email' => $faker->email,

8 'active' => $i === 0 ? true : rand(0, 1),

9 'gender' => rand(0, 1) ? 'male' : 'female',

10 'timezone' => mt_rand(-10, 10),

¹https://github.com/fzaninotto/Faker
²https://twitter.com/francoisz/
³http://laravel.com/docs/migrations#database-seeding

https://github.com/fzaninotto/Faker
https://twitter.com/francoisz/
http://laravel.com/docs/migrations#database-seeding
https://github.com/fzaninotto/Faker
https://twitter.com/francoisz/
http://laravel.com/docs/migrations#database-seeding

Useful Database Seeding 3

11 'birthday' => rand(0, 1) ? $faker->dateTimeBetween('-40 years', '-18 yea\

12 rs') : null,

13 'location' => rand(0, 1) ? "{$faker->city}, {$faker->state}" : null,

14 'had_feedback_email' => (bool) rand(0, 1),

15 'sync_name_bio' => (bool) rand(0, 1),

16 'bio' => $faker->sentence(100),

17 'picture_url' => $this->picture_url[rand(0, 19)],

18]);

19 }

So what do we have here? Let’s go through this section at a time:

1 $faker = Faker\Factory::create();

An instance of Faker, our bullshit artist for-hire.

1 for ($i = 0; $i < Config::get('seeding.users'); $i++) {

We are going to want a certain number of users, but I’d recommend you have a few less on development than
you do on testing or staging, because time.

1 $user = User::create([

2 'name' => $faker->name,

3 'email' => $faker->email,

Make a random name and random email. We don’t have to define the pool of random data it uses, because
IT’S MAGIC!

1 'active' => $i === 0 ? true : rand(0, 1),

Ok I lied, our garbage is not 100% random. We want user number 1 to be active for tests later on.

1 'gender' => $faker->randomElement(['male', 'female']),

Gender equality is important.

1 'timezone' => mt_rand(-10, 10),

Our original developer decided that saving timezones as an integer was a clever thing to do.

Useful Database Seeding 4

Store Timezones, Not Offsets
Did you know that some timezones are not complete hours? Did you know that Nepal is UTC/GMT
+05:45? Did you know that Chatham Island (New Zealand) goes from UTC/GMT +12:45 to
UTC/GMT +13:45 in their local summer? Did you know that some places add 30 minutes when
in daylight savings time? Don’t use integers as timestamps.
PHP implements the IANA⁴ timezone database, which is an industry standard. If you store
America/New_York or Asia/Khandyga for users, then the offset and daylight savings time will be
automatically calculated.

1 'birthday' => rand(0, 1) ? $faker->dateTimeBetween('-40 years', '-18 yea\

2 rs') : null,

Users of all of our target age demographic.

1 'location' => rand(0, 1) ? "{$faker->city}, {$faker->state}" : null,

Give us a city name and a state name. This works fine with foreign countries too which is cool.

1 'had_feedback_email' => $faker->boolean,

2 'sync_name_bio' => $faker->boolean,

Some user flags we don’t care much about. True or false, whatever.

1 'bio' => $faker->sentence(100),

Make a sentence with 100 characters in it.

1.4 That’s about it

You will end up making a lot of these files, and you will want to populate pretty much every table you have
with data. You will also want to tell your Database Seeder to wipe all the tables that will be populated. Do
this globally right at the start of the process. Do not wipe tables at the top of each seeder, or content in that
table from other seeders will be deleted.

⁴http://www.iana.org/time-zones

http://www.iana.org/time-zones
http://www.iana.org/time-zones

Useful Database Seeding 5

Example of an overall system in Laravel 4

1 class DatabaseSeeder extends Seeder

2 {

3 public function run()

4 {

5 if (App::environment() === 'production') {

6 exit('I just stopped you getting fired. Love Phil');

7 }

8

9 Eloquent::unguard();

10

11 $tables = [

12 'locations',

13 'merchants',

14 'opps',

15 'opps_locations',

16 'moments',

17 'rewards',

18 'users',

19 'oauth_sessions',

20 'notifications',

21 'favorites',

22 'settings',

23 'friendships',

24 'impressions',

25];

26

27 foreach ($tables as $table) {

28 DB::table($table)->truncate();

29 }

30

31 $this->call('MerchantTableSeeder');

32 $this->call('PlaceTableSeeder');

33 $this->call('UserTableSeeder');

34 $this->call('OppTableSeeder');

35 $this->call('MomentTableSeeder');

36 }

37 }

This wipes everything, then runs other seeder classes to do their thing.

Useful Database Seeding 6

Foreign Keys
It can be difficult to wipe a database when foreign keys constraints are enforced, so in that scenario
your seeder should run DB::statement('SET FOREIGN_KEY_CHECKS=0;'); before the truncation
of the tables and DB::statement('SET FOREIGN_KEY_CHECKS=1;'); afterwards to re-enable the
checks.

1.5 Secondary Data

As I said it is quite likely that you will need to insert data that relates to each other. To do this you work
out which data will be primary (like users); in the case of a check-in system probably you will also consider
“venues” or “merchants” depending on the nomenclature of your system.

For this example I will show how to create “merchants”, then attach “opportunities”, which are essentially
“campaigns”.

Primary Seeder for the Merchant Table

1 <?php

2

3 class MerchantTableSeeder extends Seeder

4 {

5 /**

6 * Run the database seeds.

7 *

8 * @return void

9 */

10 public function run()

11 {

12 $faker = Faker\Factory::create();

13

14 // Create however many merchants

15 for ($i = 0; $i < Config::get('seeding.merchants'); $i++) {

16 Merchant::create([

17 'name' => $faker->company,

18 'website' => $faker->url,

19 'phone' => $faker->phoneNumber,

20 'description' => $faker->text(200),

21]);

22 }

23 }

24 }

Useful Database Seeding 7

Primary Seeder for the Opp Table

1 <?php

2

3 use Carbon\Carbon;

4 use Kapture\CategoryFinder;

5

6 class OppTableSeeder extends Seeder

7 {

8 /**

9 * Build it up

10 *

11 * @param Place

12 */

13 public function __construct(CategoryFinder $finder, Place $places)

14 {

15 $this->categoryFinder = $finder;

16 $this->places = $places;

17 }

18

19 /**

20 * Images.

21 *

22 * @var string

23 */

24 protected $imageArray = [

25 'http://example.com/images/example1.jpg',

26 'http://example.com/images/example2.jpg',

27 'http://example.com/images/example3.jpg',

28 'http://example.com/images/example4.jpg',

29 'http://example.com/images/example5.jpg',

30];

31

32 /**

33 * Run the database seeds.

34 *

35 * @return void

36 */

37 public function run()

38 {

39 $faker = Faker\Factory::create();

40

41 foreach (Merchant::all() as $merchant) {

42

43 // Create however many opps for this merchant

44 foreach (range(1, rand(2, 4)) as $i) {

Useful Database Seeding 8

45

46 // There are three types of image to add

47 $image = Image::create([

48 'name' => "{$merchant->name} Image #{$i}",

49 'url' => $faker->randomElement($this->imageArray),

50]);

51

52 // Start it immediately and make it last for 2 months

53 $starts = Carbon::now();

54

55 // We need to definitely have at least one we are in control of

56 if ($i === 1) {

57 // Have ONE that ends really soon

58 $ends = Carbon::now()->addDays(2);

59 $teaser = 'Something about cheese';

60

61 } else {

62 $ends = Carbon::now()->addDays(60);

63 $teaser = $faker->sentence(rand(3, 5));

64 }

65

66 $category = $this->categoryFinder->setRandom()->getOne();

67

68 $opp = Opp::create([

69 'name' => $faker->sentence(rand(3, 5)),

70 'teaser' => $teaser,

71 'details' => $faker->paragraph(3),

72 'starts' => $starts->format('Y-m-d H:i:s'),

73 'ends' => $ends->format('Y-m-d H:i:s'),

74 'category_id' => $category->id,

75 'merchant_id' => $merchant->id,

76 'published' => true,

77]);

78

79 // Attach the location to the opp

80 $opp->images()->attach($image, [

81 'published' => true

82]);

83 }

84

85 echo "Created $i Opps for $merchant->name \n";

86 }

87 }

88 }

Useful Database Seeding 9

This might look a little crazy and it is certainly a mixture of lazy-static ORM usage in the controller and some
dependency injection, but these seeders have not received a large amount of love. They definitely do their
job, and could always be cleaner, but the basics here are:

1 foreach (Merchant::all() as $merchant) {

Loop through all merchants.

1 // Create however many opps for this merchant

2 foreach (range(1, rand(2, 4)) as $i) {

Create between 1 and 4 opportunities for a merchant.

1 // There are three types of image to add

2 $image = Image::create([

3 'name' => "{$merchant->name} Image #{$i}",

4 'url' => $faker->randomElement($this->imageArray),

5]);

Add an image from our array of example images on S3 or our website somewhere. The more the merrier.

1 $category = $this->categoryFinder->setRandom()->getOne();

I will talk more about finders in a later chapter, but for now just know this is a convenient way of getting a
single random category back.

The rest should all be relatively obvious.

If you’re using Laravel 4 you can run the above commands on the command line with: $ php artisan db:seed.

1.6 When to run this?

This is often run manually, and automatically depending on the instances.

For example, if you just added a new endpoint with new data, you will want to let your team-mates know to
pull the latest code, run the migrations and run the db seed.

This is also great of course when a freelancer comes in to do some work, or a new developer starts up, or your
iPhone dev wants to get some data to use. In all these instances that command just needs to be run on the
command line.

This is also occasionally run manually on the staging server, and automatically on the Jenkins testing server
when we deploy new builds of the API.

2 Planning and Creating Endpoints
With your database planned and full of fake but useful data it is time to plan what your endpoints are going
to look like. An endpoint is simply a URL. When you go to http://example.com/foo/bar then that is an
endpoint and you simply need to call it /foo/bar because the domain will be the same for all of them.

The first step is to work out the requirements of an API, then we can move onto some theory and finally see
the theory implemented in some examples.

2.1 Functional Requirements

Try thinking of everything your API will need to handle. This will initially be a list of CRUD (Create, Read,
Update, Delete) endpoints for your resources, Talk to your mobile app developer, your JS frontend people, or
just talk to yourself if you are the only developer on the project.

Definitely talk to your customers or “the business” (they are the customers) and get them to help you think
of functionality too, but don’t expect them to know what an endpoint is.

When you have a relatively extensive list the next step is to make a simple list of “Actions”. This is very much
like planning a PHP class, you first write up pseudo-code referencing the classes and methods like they exist,
right? TDD (Test Driven Development)? If not that is how you should do it, or Chris Hartjes will find you,
and he will kill you.

I will go ahead with the check-in application, introduced in the previous chapter, to show how these principles
can be put in practice.

So if I have a “Places” resource in mind, I need to list out with just bullet points what it will do:

Places
- Create
- Read
- Update
- Delete

That is fairly obvious. Who will be able to view these places and who will be able to create and edit them is
(for now) irrelevant in our planning stages, as this API will get much smarter with the ideas of user-context
and permissions at a later date. For now just list all the things that need to be done.

A paginate-able list of places is also a requirement, so get that down:

Places
- Create
- Read
- Update
- Delete
- List

Planning and Creating Endpoints 11

The API will need to offer the ability to search places by location too, but that is not a brand new endpoint. If
the API was built with SOAP or XML-RPC you would create a getPlacesByLatAndLon method to hit in the
URL, but this isn’t SOAP - thankfully. The list method will handle that with a few parameters, so why not
shove them in as a note for later:

Places
- Create
- Read
- Update
- Delete
- List (lat, lon, distance or box)

Adding a few parameters as a reminder at this stage is cool, but lets not worry about adding too much. For
example, create and update are complicated so adding every single field would be a mess.

Update is more than just updating the specific “places” fields in the places SQL table. Update can do all sorts
of cool stuff. If you need to “favorite” a place, just send is_favorite to that endpoint and you’ve favorited it.
More on that later, just remember that not every single action requires its own endpoint.

Places will also need to have an image uploaded via the API. In this example we are only going to accept one
image for a place and a new image overrides the old, so add “Image” to the list. Otherwise you’d add “Images”
to the list:

Places
- Create
- Read
- Update
- Delete
- List (lat, lon, distance or box)
- Image

A complete API “action plan” might look like this:

Categories
- Create
- List

Checkins
- Create
- Read
- Update
- Delete
- List
- Image

Planning and Creating Endpoints 12

Opps
- Create
- Read
- Update
- Delete
- List
- Image
- Checkins

Places
- Create
- Read
- Update
- Delete
- List (lat, lon, distance or box)
- Image

Users
- Create
- Read
- Update
- Delete
- List (active, suspended)
- Image
- Favorites
- Checkins
- Followers

That might not contain everything, but it seems like a fairly solid start to our API. It is certainly going to take
long enough to write all that so if somebody thinks of something else they can just make an issue.

Moving on.

2.2 Endpoint Theory

Turning this “Action Plan” into actual endpoints requires knowing a little theory on RESTful APIs and “best
practices” for naming conventions. There are no right answers here, but some approaches have fewer cons
than others. I will try to push you in the direction I have found to be most useful, and highlight the pros and
cons of each.

GET Resources

• GET /resources - Some paginated list of stuff, in some logical default order for that specific data.
• GET /resources/X - Just entity X. That can be an ID, hash, slug, username, etc as long as it unique to
one “resource”.

Planning and Creating Endpoints 13

• GET /resources/X,Y,Z - The client wants multiple things, so give them multiple things.

It can be hard to pick between sub-resource URLs or embedded data. Embedded data can be rather difficult
to pull off so that will be saved for Chapter 7: Embedding Data. For now the answer is “just sub-resources”,
but eventually the answer will be “both”. This is how sub-resources look:

• GET /places/X/checkins - Find all the checkins for a specific place.
• GET /users/X/checkins - Find all the checkins for a specific user.
• GET /users/X/checkins/Y - Find a specific checkin for a specific user.

The latter is questionable, and not something I have ever personally done. At that point I would prefer to
simply use /checkins/X.

Auto-Increment is the Devil
In these examples X and Y can be an auto-incrementing ID as many developers will assume. One
important factor with auto-incrementing ID’s is that anyone with access to your API will know
exactly how many resources you have, which might not be a statistic you want your competitors
to have.

Consumers could also write a script which hits /users/1, then /users/2 and /users/3, etc scraping
all data as it goes. Sure they could probably do that from the “list” endpoints anyway, but not all
resources should have a “get all” approach.

Instead a unique identifier is often a good idea. A universal unique identifier (UUID) seems like a
logical thing to do: ramsey\uuid for PHP¹, uuid for Ruby², uuid in Python 2.5+³.

DELETE Resources

Want to delete things? Easy:

• DELETE /places/X - Delete a single place.
• DELETE /places/X,Y,Z - Delete a bunch of places.
• DELETE /places - This is a potentially dangerous endpoint that could be skipped, as it should delete all
places.

• DELETE /places/X/image - Delete the image for a place, or:
• DELETE /places/X/images - If you chose to have multiple images this would remove all of them.

¹https://github.com/ramsey/uuid
²https://rubygems.org/gems/uuid
³http://docs.python.org/2/library/uuid.html

https://github.com/ramsey/uuid
https://rubygems.org/gems/uuid
http://docs.python.org/2/library/uuid.html
https://github.com/ramsey/uuid
https://rubygems.org/gems/uuid
http://docs.python.org/2/library/uuid.html

Planning and Creating Endpoints 14

POST vs PUT: FIGHT!

What about creating and updating? This is where it gets almost religious. There are lots of people who will try
to pair the HTTP POST or HTTP PUT verb (verb, i.e. a HTTP method) to a specific CRUD action and always
only ever do that one action with that one verb. That sucks and is not productive or functionally scalable.

Generally speaking, PUT is used if you know the entire URL before hand and the action is idempotent.
Idempotent is a fancy word for “can do it over and over again without causing different results”.

For example, create could be a PUT if you are creating one image for a place. If you were to do this:

1 PUT /places/1/image HTTP/1.1

2 Host: example.com

3 Content-Type: image/jpeg

That would be a perfect example of when to use a PUT because you already know the entire URL (
/places/1/image) and you can do it time and time again.

At Kapture we use a POST to /checkins to create the meta-data for that new checkin, then that will return the
URL for us to PUT the image to. You could try checking in multiple times and it wouldn’t matter because none
of those processes would be complete, but POSTing multiple times is not idempotent because each checkin
is different. PUT is idempotent because you are uploading that image to the full URL and you can do it over
and over again if you like (for instance, because the upload failed and it has to try again).

So, if you have multiple images for places maybe you could POST /places/X/images and multiple attempts
would be different images. If you know you are only going to have one image and a new attempt is an override
then PUT /places/X/image would be ideal.

Another example could be user settings:

• POST /me/settings - I would expect this to allow me to POST specific fields one at a time, not force
me to send the entire body of settings.

• PUT /me/settings - Send me ALL the settings.

It’s a tricky difference, but do not try and tie a HTTP Method to one CRUD action only.

Plural, Singular or Both?

Some developers decide to make all endpoints singular but I take issue with that. Given /user/1 and /user,
which user is that last one returning? Is it “me”? What about /place? It returns multiple? Confusing.

I know it can be tempting to create /user/1 and /users because the two endpoints do different things,
right? I started off down this route (#pun) originally, but in my experience this convention grows badly.
Sure it works with the example of “users”, but what about those fun English words that create exceptions, like
/opportunity/1 which becomes /opportunities. Gross.

I pick plural for everything as it is the most obvious:

Planning and Creating Endpoints 15

• /places - “If I run a GET on that I will get a collection of places”
• /places/45 - “Pretty sure I am just talking about places 45”
• /places/45,28 - “Ahh, places 45 and 28, got it”

Another solid reason for using plural consistently is that it allows for consistently named sub-resources:

• /places

• /places/45

• /places/45/checkins

• /places/45/checkins/91

• /checkins/91

Consistency is key.

Verb or Noun?

Traditionally APIs would consist of a series of endpoints which all described actions:

1 POST /SendUserMessage HTTP/1.1

2 Host: example.com

3 Content-Type: application/x-www-form-urlencoded

4

5 id=5&message=Hello!

As you might have already gathered, this is not how things are done with REST.

Some API developers consider the following approach to be more RESTful because it uses a “sub-resource”:

1 POST /users/5/send-message HTTP/1.1

2 Host: example.com

3 Content-Type: application/json

4

5 { "message" : "Hello!" }

Nope, because that is still using a verb in the URL. A verb is an action - a doing term, and our API only needs
one verb - the HTTP Method. All other verbs need to stay out of the URL.

A noun is a “place” or a “thing”. Resources are “things”, and a URL becomes the “place” on the Internet where
a “thing” lives.

This example would be drastically more RESTful:

Planning and Creating Endpoints 16

1 POST /users/5/messages HTTP/1.1

2 Host: example.com

3 Content-Type: application/json

4

5 { "message" : "Hello!" }

Perfect! We are creating a new message, which belongs to a user. The best part about keeping it nice and
RESTful like this, is that other HTTP actions can be made to the identical URL:

• GET /users/philsturgeon/messages

• PATCH /users/philsturgeon/messages/xdWRwerG

• DELETE /users/philsturgeon/messages/xdWRwerG

This is all much easier to document and much easier to understand for both humans and software which is
“RESTfully aware.”

And, if like a client of mine you need to send multiple messages to multiple users - potentially hundreds
of thousands - you could even make messages its own endpoint and send the messages in batches of a few
hundred:

1 POST /messages HTTP/1.1

2 Host: example.com

3 Content-Type: application/json

4

5 {

6 [{

7 "user" : { "id" : 10 }

8 "message" : "Hello!"

9 },

10 {

11 "user" : { "username" : "philsturgeon" }

12 "message" : "Hello!"

13 }]

14 }

This would look incredibly similar to create the data as it would to retrieve the data, which is intentional.

2.3 Planning Endpoints

Controllers

You need to list events, venues, users and categories? Easy. One controller for each type of resource:

• CategoriesController

Planning and Creating Endpoints 17

• EventsController
• UsersController
• VenuesController

Everything in REST is a resource, so each resource needs a controller.

Later on we will look at some things that are not resources. Sub-resources can sometimes just be a method,
for example profile and settings are a sub-resource of “Users”, so maybe they can go in the “User” controller.
These rules are flexible.

Routes

Try to avoid the temptation to screw around with magic routing conventions⁴, just make them manually. I
will keep going with the previous examples and show the process of turning the action plan into routes, using
Laravel 4 syntax because why not:

Action Endpoint Route

Create POST /users Route::post('users',

'UsersController@create');
Read GET /users/X Route::get('users/{id}',

'UsersController@show');
Update PUT /users/X Route::put('users/{id}',

'UsersController@update');
Delete DELETE /users/X Route::delete('users/{id}',

'UsersController@delete');
List GET /users Route::get('users',

'UsersController@list');
Image PUT /users/X/image Route::put('users/{id}/image',

'UsersController@uploadImage');
Favorites GET /users/X/favorites Route::get('users/{id}/favorites',

'UsersController@favorites');
Checkins GET /users/X/checkins Route::get('users/{user_id}/checkins',

'CheckinsController@index');

There are a few things in here worth considering.

1. Favorites go to the UserController, because favorites are only ever relevant to the user.
2. Checkins go to the CheckinController, because we might already have a checkin controller handling

/checkins and the logic is basically identical. We will know if there is a user_id param in the URL if
our router is nice enough to let us know, so we can use that to make it user specific if needs be.

They are rather complex concerns, but are examples of things you can be thinking about at this point. You
don’t want to have multiple endpoints doing painfully similar things with copy and paste logic because:

1. PHP Copy/Paste Detector⁵ will be angry

⁴http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil
⁵https://github.com/sebastianbergmann/phpcpd

http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil
https://github.com/sebastianbergmann/phpcpd
http://philsturgeon.co.uk/blog/2013/07/beware-the-route-to-evil
https://github.com/sebastianbergmann/phpcpd

Planning and Creating Endpoints 18

2. Your iPhone developer will be mad that different endpoints provide the same resource but in a slightly
different format - therefore confusing RestKit

3. It is boring and “ain’t nobody got time for that”

Methods

When you have listed all of the routes you will need for your application go and make them all as methods in
their controllers. Make them all empty and have one of them return "Oh hai!"; and check the output. GET
/places for example should Oh hai! in the browser.

You just wrote an API.

3 Input and Output Theory

3.1 Introduction

Now that we have a good idea how endpoints work the next glass of theory to swallow down is input and
output. This is the easiest of all, really, as is really just HTTP “requests” and “responses”. This is the same as
AJAX or anything else.

If you have ever been forced to work with SOAP you will know all about WSDLs. If you know what they are,
be happy you no longer need them. If you do not know what a WSDL is then be happy you never have to
learn. SOAP was the worst.

Input is purely a HTTP request and there are multiple parts to this. Here is an example:

3.2 Requests

1 GET /places?lat=40.759211&lon=-73.984638 HTTP/1.1

2 Host: api.example.com

This is a very simple GET request. We can see the URL path being requested is /places with a query string
of lat=40.759211&lon=-73.984638. The HTTP version in use is HTTP/1.1, the host name is defined. This is
essentially what your browser does when you go to any website. Rather boring I’m sure.

1 POST /moments/1/gift HTTP/1.1

2 Host: api.example.com

3 Authorization: Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/json

5

6 { "user_id" : 2 }

Here we make a POST request with a “HTTP Body”. The Content-Type header points out we are sending
JSON and the blank line above the JSON separates the “HTTP Headers” from the “HTTP Body”. HTTP really
is amazingly simple, this is all you need to do for anything and you can do all of this with a HTTP client in
whatever programming language you feel like using this week:

Input and Output Theory 20

Using PHP and the Guzzle HTTP library to make a HTTP Request

1 use Guzzle\Http\Client;

2

3 $headers = [

4 'Authorization' => 'Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1',

5 'Content-Type' => 'application/json',

6];

7 $payload = [

8 'user_id' => 2

9];

10

11 // Create a client and provide a base URL

12 $client = new Client('http://api.example.com');

13

14 $req = $client->post('/moments/1/gift', $headers, json_encode($payload))

Using Python and the Requests HTTP library to make a HTTP Request

1 import requests

2

3 headers = {

4 'Authorization': 'Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1',

5 'Content-Type': 'application/json',

6 }

7 payload = {

8 'user_id': 2

9 }

10 req = requests.post('http://api.example.com/moments/1/gift', data=json.dumps(payload), hea\

11 ders=headers)

It’s all the same. Define your headers, define the body in an appropriate format and send it on its way. Then
you get a response, so let’s talk about those.

3.3 Responses

Much the same as a HTTP Request, your HTTP Response is going to end up as plain text (unless you’re using
SSL but shut up we aren’t there yet).

Input and Output Theory 21

Example HTTP response containing a JSON body

1 HTTP/1.1 200 OK

2 Server: nginx

3 Content-Type: application/json

4 Connection: close

5 X-Powered-By: PHP/5.5.5-1+debphp.org~quantal+2

6 Cache-Control: no-cache, private

7 Date: Fri, 22 Nov 2013 16:37:57 GMT

8 Transfer-Encoding: Identity

9

10 {"id":1690,"is_gift":true,"user":{"id":1,"name":"Theron Weissnat","bio":"Occaecati exceptu\

11 ri magni odio distinctio dolores illum voluptas voluptatem in repellendus eum enim ","gend\

12 er":"female","picture_url":"https:\/\/si0.twimg.com\/profile_images\/711293289\/hhdl-twitt\

13 er_normal.png","cover_url":null,"location":null,"timezone":-1,"birthday":"1989-09-17 16:27\

14 :36","status":"available","created_at":"2013-11-22 16:37:57","redeem_by":"2013-12-22 16:37\

15 :57"}

We can spot some fairly obvious things here. 200 OK is a standard “no issues here buddy” response. We have
a Content-Type again, and the API is pointing out that caching this is not ok. The X-Powered-By header is
also a nice little reminder that I should switch expose_php = On to expose_php = Off in php.ini. Oops.

This is essentially the majority of how an API works. Just like learning a programming language you will
always come across new functions and utilities which will improve the RESTful-ness of your API and I will
point out a bunch of them as we go, but just like the levenshtein()¹ function in PHP there will be HTTP
Headers that you had no idea existed popping up that you will think “How the shit did I not notice that?”.

3.4 Supporting Formats

Picking what formats to support is hard, but there are a few easy wins to make early on.

No Form Data

PHP developers always try to do something that literally nobody else does, and that is to send data to the API
using: application/x-www-form-urlencoded.

This mime-type is one of the fewways that browsers send data via a formwhen you use HTTP POST, and PHP
will take that data, slice it up and make it available in $_POST. Because of this convenient feature many PHP
developers will make their API send data that way, then wonder why sending data with PUT is “different”.

Urf.

$_GET and $_POST do not have the 1:1 relationship with HTTP GET and HTTP POST as their names might
suggest. $_GET just contains query string content regardless of theHTTPmethod. $_POST contains the values of
theHTTPBody if it was in the right format and the Content-Type header is application/x-www-form-urlencoded.

¹http://php.net/manual/en/function.levenshtein.php

http://php.net/manual/en/function.levenshtein.php
http://php.net/manual/en/function.levenshtein.php

Input and Output Theory 22

A HTTP POST item could still have a query string, and that would still be in $_GET. Some PHP frameworks
kill off $_GET data in a HTTP POST request, which further exagerates this 1:1 relationship between the super-
global and the method.

So knowing that PHP just has some silly names for things, we can move on and completely ignore $_POST.
Pour one out in the ground, because it is dead to you.

Why? Somany reasons, including the fact that once again everything in application/x-www-form-urlencoded
is a string.

1 foo=something&bar=1&baz=0

Yeah you have to use 1 or 0 because bar=true would be string("true") on the server-side. Data-types are
important, so lets not just throw them out the window for the sake of “easy access to our data”. That argument
is also moronic as Input::json('foo') is possible in most decent PHP frameworks and even without it you
just have to file_get_contents('php://input') to read the HTTP body yourself.

1 POST /checkins HTTP/1.1

2 Host: api.example.com

3 Authorization: Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/json

5

6 {

7 "checkin": {

8 "place_id" : 1,

9 "message": "This is a bunch of text.",

10 "with_friends": [1, 2, 3, 4, 5]

11 }

12 }

This is a perfectly valid HTTP body for a checkin. You know what they are saying, you know who the user
is from their auth token, you know who they are with and you get the benefit of having it wrapped up in a
single checkin key for simple documentation and easy “You sent a checkin object to the user settings page…
muppet.” responses.

That same request using form data is a mess.

1 POST /checkins HTTP/1.1

2 Host: api.example.com

3 Authorization: Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/x-www-form-urlencoded

5

6 checkin[place_id]=1&checkin[message]=This is a bunch of text&checkin[with_friends][]=1&che\

7 ckin[with_friends][]=2&checkin[with_friends][]=3&checkin[with_friends][]=4&checkin[with_fr\

8 iends][]=5

This makes me upset and angry. Do not do it in your API.

Finally, do not try to be clever by mixing JSON with form data:

Input and Output Theory 23

1 POST /checkins HTTP/1.1

2 Host: api.example.com

3 Authorization: Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/x-www-form-urlencoded

5

6 json="{

7 \"checkin\": {

8 \"place_id\" : 1,

9 \"message\": \"This is a bunch of text.\",

10 \"with_friends\": [1, 2, 3, 4, 5]

11 }

12 }"

Who is the developer trying to impress with stuff like that? It is insanity and anyone who tries this needs to
have their badge and gun revoked.

JSON and XML

Anymodern API you talk to will support JSON unless it is a financial services API or the developer is a moron
- probably both to be fair. Sometimes they will support XML too. XML used to be a the popular format for
data transfer with both SOAP and XML-RPC (duh). XML is however a nasty-ass disgusting mess of tags and
the file-size of an XML file containing the same data as a JSON file is often much larger.

Beyond purely the size of the data being stored, XML is horribly bad at storing type. That might not worry a
PHP developer all that much as PHP is not really any better when it comes to type, but look at this:

1 {

2 "place": {

3 "id" : 1,

4 "name": "This is a bunch of text.",

5 "is_true": false,

6 "maybe": null,

7 "empty_string": ""

8 }

9 }

That response in XML:

Input and Output Theory 24

1 <places>

2 <place>

3 <id>1</id>,

4 <name>This is a bunch of text.</name>

5 <is_true>0</is_true>

6 <maybe />

7 <empty_string />

8 </place>

9 </places>

Basically in XML everything is considered a string, meaning integers, booleans and nulls can be confused.
Both maybe and empty_string have the same value, because there is no way to denote null either. Gross…

Now, the XML-savvy among you will be wondering why I am not using attributes to simplify it? Well, this
XML structure is a typical “auto-generated” chunk of XML converted from an array, in the same way that
JSON is built - but this of course ignores attributes and does not allow for all the specific structure that your
average XML consumer will demand.

If you want to start using attributes for some bits of data but not others then your conversion logic becomes
INSANELY complicated. How would we build something like this?

1 <places>

2 <place id="1" is_true="1">

3 <name>This is a bunch of text.</name>

4 <empty_string />

5 </place>

6 </places>

The answer is unless you seek specific fields and try to guess that an “id” is probably an attribute, etc then
there is no programatic way in your API to take the same array and make JSON AND XML. Instead you
realistically need to use a “view” (from the MVC pattern) to represent this data just like you would with
HTML or work with XML generation in a more OOP way. Either way it is an abomination and I refuse to
work in those conditions. Luckily nobody at Kapture wants XML so I don’t have to move back to England
just yet.

If your team is on the fence about XML and you don’t 100% need it, then don’t bother using it. I know it is
fun to show off your API switching formats and supporting all sorts of stuff, but I would strongly urge you to
work out what format(s) you actually need and STICK TO THOSE. Sure Flickr supports lolcat as input and
output, but they have a much bigger team so you don’t need to worry about it. JSON is fine. If you have a lot
of Ruby bros around then you will probably want to output YML too, which is as easy to generate as JSON
in most cases.

3.5 Content Structure

This is a tough topic and there is no right answer and whether you use EmberJS, RestKit or any other
framework with knowledge of REST you will find somebody annoyed that the data is not in their preferred
format. There are a lot of factors and I will simply explain them all and let you know where I landed.

Input and Output Theory 25

JSON API

There is one recommended format on JSON API² which maybe you all just want to use. It suggests that both
single resources and resource collections should both be inside a plural key.

1 {

2 "posts": [{

3 "id": "1",

4 "title": "Rails is Omakase"

5 }]

6 }

Pros

• Consistent response, always has the same structure

Cons

• Some RESTful/Data utilities freak about have single responses in an array
• Potentially confusing to humans

EmberJS (EmberData) out of the box will get fairly sad about this and I had trouble hacking it to support the
fact that only requesting one item would still return an array that looks like it could contain multiple. It seems
(to me) to be a weird rule. Imagine you call /me to get the current user, and it gives you a collection? What
the hell?

Do not discount JSON API as it is a wonderful resource with a lot of great ideas, but it strikes me as over-
complicated in multiple areas.

Twitter-style

Ask for one user get one user:

1 {

2 "name": "Phil Sturgeon",

3 "id": "511501255"

4 }

Ask for a collection of things and get a collection of things:

²http://jsonapi.org/format/

http://jsonapi.org/format/
http://jsonapi.org/format/

Input and Output Theory 26

1 [

2 {

3 "name": "Hulk Hogan",

4 "id": "100002"

5 },

6 {

7 "name": "Mick Foley",

8 "id": "100003"

9 }

10]

Pros

• Minimalistic response
• Almost every framework/utility can comprehend it

Cons

• No space for pagination or other meta data

This is potentially a reasonable solution if you will never use pagination or meta data.

Facebook-style

Ask for one user get one user:

1 {

2 "name": "Phil Sturgeon",

3 "id": "511501255"

4 }

Ask for a collection of things and get a collection of things, but namespaced:

1 {

2 "data": [

3 {

4 "name": "Hulk Hogan",

5 "id": "100002"

6 },

7 {

8 "name": "Mick Foley",

9 "id": "100003"

10 }

11]

12 }

Input and Output Theory 27

Pros

• Space for pagination and other meta data in collection
• Simplistic response even with the extra namespace

Cons

• Single items still can only have meta data by embedding it in the item resource

By placing the collection into the "data" namespace you can easily add other content next to it which relates
to the response but is not part of the list of resources at all. Counts, links, etc can all go here (more on this
later). It also means when you embed other nested relationships you can include a ”data” element for them
and even include meta data for those embedded relationships. More on that later on too.

The only potential “con” left with Facebook is that the single resources are not namespaced, meaning that
adding any sort of meta data would pollute the global namespace - something which PHP developers are
against after a decade of flagrantly doing so.

So the final output example (and the one which I am starting to use at Kapture for v4) is this:

Much Namespace, Nice Output

Namespace the single items.

1 {

2 "data": {

3 "name": "Phil Sturgeon",

4 "id": "511501255"

5 }

6 }

Namespace the multiple items.

1 {

2 "data": [

3 {

4 "name": "Hulk Hogan",

5 "id": "100002"

6 },

7 {

8 "name": "Mick Foley",

9 "id": "100003"

10 }

11]

12 }

Input and Output Theory 28

This is close to the JSON API response, has the benefits of the Facebook approach and is just like Twitter but
everything is namespaced. Some folks (including me in the past) will suggest that you should change "data"
to "users" but when you start to nest your data you want to keep that special name for the name of the
relationship. For example:

1 {

2 "data": {

3 "name": "Phil Sturgeon",

4 "id": "511501255"

5 "comments": {

6 "data": [

7 {

8 "id": 123423

9 "text": "MongoDB is web-scale!"

10 }

11]

12 }

13 }

14 }

So here we can see the benefits of keeping the root scope generic. We know that a user is being returned
because we are requesting a user, and when comments are being returned we wrap that in a "data" item so
that pagination or links can be added to that nested data too. This is the structure I will be testing against and
using for examples, but it is only a simple tweak between any of these structures.

We will get to links, relationships, side-loading, pagination, etc in later chapters, but for now forget about it.
All you want to worry about is your response, which consists of this chunk of data or an error.

4 Status Codes, Errors and Messages

4.1 Introduction

If everything goes smoothly you want to show some data. If a valid request comes in for a data which is valid
you show data, if creating something on the API with valid data, you show the created object. If something
goes wrong, however, you want to let people know what is wrong using two simultaneous approaches:

1. HTTP status codes
2. Custom error codes and messages

4.2 HTTP Status Codes

Status Codes are used in all responses and have a number from 200 to 507 - with plenty of gaps in between -
and each has a message and a definition. Most server-side languages, frameworks, etc default to “200 OK”.

Status codes are grouped into a few different categories:

2xx is all about success
Whatever the client tried to do was successful up to the point that the response was send. Keep in mind that
a status like 202 Accepted doesn’t say anything about the actual result, it only indicates that a request was
accepted and is being processed asynchronously.

3xx is all about redirection
These are all about sending the calling application somewhere else for the actual resource. The best known
of these are the 303 See Other and the 301 Moved Permanently which are used a lot on the web to redirect a
browser to another URL.

4xx is all about client errors
With these status codes we indicate that the client has done something invalid and needs to fix the request
before resending it.

5xx is all about service errors
With these status codes we indicate that something went wrong in the service. For example a database
connection failed. Typically a client application can retry the request. The server can even specify when
the client is allowed to retry the command using a Retry-After HTTP header.

Using HTTP status codes in a REST service¹ – Maurice de Beijer

For a more complete list of HTTP status codes and their definitions the REST &WOAWiki² has an extensive
list of them.

Arguments between developers will continue for the rest of time over the exact appropriate code to use in
any given situation, but these are the status codes the API uses at Kapture:

¹http://www.develop.com/httpstatuscodesrest
²http://restpatterns.org/HTTP_Status_Codes

http://www.develop.com/httpstatuscodesrest
http://restpatterns.org/HTTP_Status_Codes
http://www.develop.com/httpstatuscodesrest
http://restpatterns.org/HTTP_Status_Codes

Status Codes, Errors and Messages 30

• 200 - Generic everything is OK
• 201 - Created something OK
• 202 - Accepted but is being processed async (for a video means encoding, for an image means resizing,
etc)

• 400 - Bad Request (should really be for invalid syntax, but some folks use for validation)
• 401 - Unauthorized (no current user and there should be)
• 403 - The current user is forbidden from accessing this data
• 404 - That URL is not a valid route, or the item resource does not exist
• 410 - Data has been deleted, deactivated, suspended, etc
• 405 - Method Not Allowed (your framework will probably do this for you)
• 500 - Something unexpected happened and it is the APIs fault
• 503 - API is not here right now, please try again later

It can be tempting to try and squeeze as many error codes in as you can, but I would advise you to try and
keep it simple. You won’t unlock any achievements for using them all.

Most 5xx issues will most likely happen under odd architecture or server related issues that are nothing to do
with your API, like if PHP-FPM segfaults behind nginx (502), if your Amazon Elastic Load Balancer has no
healthy instances (503) or if your hard-drive fills up somehow (507).

4.3 Error Codes and Error Messages

Error codes are usually strings or integers that act as a unique index to a correspond human-readable error
message with more information about what is going wrong. That sounds a lot like HTTP status codes, but
these errors are about application specific things that may or may not be anything to do with HTTP specific
responses.

Some folks will try to use HTTP status codes exclusively and skip using error codes because they do not like
the idea of making their own error codes or having to document them, but this is not a scalable approach.
There will be some situations where the same endpoint could easily return the same status code for more than
one different condition. The status codes are there to merely hint what is going on, relying on the actual error
code and error message to provide more information if the client is interested.

For example, an issuewith the access tokenwill always result in the user not being recognized. An uninterested
client would simply say “User could not get in” while a more interested client would probably prefer to offer
suggestions via messages in their own webapp/iPhone app interface.

1 {

2 "error": {

3 "type": "OAuthException",

4 "message": "Session has expired at unix time 1385243766. The current unix time is 1385\

5 848532."

6 }

7 }

Status Codes, Errors and Messages 31

Everyone can understand that.

Facebook sadly is missing an error code, so sometimes you find yourself doing string checking on the message
which is lunacy.

Foursquare is not a bad example of using both, but they place an emphasis on tying their errors to
a status code.

https://developer.foursquare.com/overview/responses

Twitter does a great job of having HTTP status codes documented and having specific error codes
for other issues too. Some are tied to HTTP status codes (which is fine) but many are not. Some are
also tied to the same status code, highlighting the issues raised above.

https://dev.twitter.com/docs/error-codes-responses

Code Text Description

161 You are unable to follow more people at
this time

Corresponds with HTTP 403 - thrown
when a user cannot follow another user
due to some kind of limit

179 Sorry, you are not authorized to see this
status

Corresponds with HTTP 403 - thrown
when a Tweet cannot be viewed by the
authenticating user, usually due to the
tweet’s author having protected their
tweets.

Programmatically Detecting Error Codes

You can use error codes to make an application respond intelligently to failure of something as basic as a
posted Twitter status.

Using Python to catch exceptions and react to the Twitter error code

1 try:

2 api.PostUpdates(body['text'])

3

4 except twitter.TwitterError, exc:

5

6 skip_codes = [

7 # Page does not exist

8 34,

9

10 # You cannot send messages to users who are not following you

11 150,

12

13 # Sent too many

14 # TODO Make this requeue with a dekay somehow

15 151

16]

https://developer.foursquare.com/overview/responses
https://dev.twitter.com/docs/error-codes-responses

Status Codes, Errors and Messages 32

17

18 error_code = exc.__getitem__(0)[0]['code']

19

20 # If the token has expired then lets knock it out so we don't try again

21 if error_code in skip_codes:

22 message.reject()

23

24 else:

25 # Rate limit exceeded? Might be worth taking a nap before we requeue

26 if error_code == 88:

27 time.sleep(10)

28

29 message.requeue()

Compare this sort of logic with Facebook - and their lack of error codes:

Using Python to analyise Facebook error strings as no codes exist

1 except facebook.GraphAPIError, e:

2

3 phrases = ['expired', 'session has been invalidated']

4

5 for phrase in phrases:

6

7 # If the token has expired then lets knock it out so we dont try again

8 if e.message.find(phrase) > 0:

9 log.info("Deactivating Token %s", user['token_id'])

10 self._deactivate_token(user['token_id'])

11

12 log.error("-- Unknown Facebook Error", exec_info=True)

If they change their error messages then this might stop working, which would be a problem. Codes (that do
not change) are a much more sensible way to go about this.

1 {

2 "error": {

3 "type": "OAuthException",

4 "code": "ERR-01234",

5 "message": "Session has expired at unix time 1385243766. The current unix time is 1385\

6 848532."

7 "documentation_url": "http://example.com/docs/errors/#ERR-01234"

8 }

9 }

Status Codes, Errors and Messages 33

4.4 Error or Errors

When returning errors, especially for validation, it can seem like a great idea to try and return multiple errors
at a time to make things quicker for whatever client is interacting with the API. This sounds good in practice,
but I find it’s best to simply stop processing (exit out) after the first error to avoid further controller interaction.
This means less work goes into making a maintainable state for your controller after something goes wrong,
and really is how most APIs work.

Try A, get error 1. Try B, get error 2. Try C, it works!

4.5 Common Pitfalls

200 OK and Error Code

If you return a HTTP status code of 200 with an error code then Chuck Norris will roundhouse your door
in, destroy your computer, instantly 35-pass wipe your backups, cancel your Dropbox account and block you
from GitHub. HTTP 4xx or 5xx codes alert the client that something bad happened, and error codes provide
specifics of the exact issue if the client is interested.

Non-Existent, Gone, or Hiding?

404 is drastically overused in applications. People use it for “never existed”, “no longer exists”, “you can’t view
it” and “it is deactivated” which is way too vague. That can be split up into 404, 403 and 410 but this is still
vague.

If you get a 403 this could be because the requesting user is in not in the correct group to see the requested
content. Should the client suggest you upgrade your account somehow? Are you not friends with the users
content you are trying to view? Should the client suggest you add them as a friend?

A 410 on a resource could be due to a user deleting that entire piece of content or it could be down to the user
deleting their entire account.

In all of these situations the ideal solution is to complement the HTTP status code with an error code, which
can be whatever you want as long as they are unique within your API and documented somewhere. Do not
do what Google does and supply a list of error codes then have other error codes which are not documented
anywhere, because if I see that I will come for you.

5 Endpoint Testing

5.1 Introduction

You might be sitting there thinking “This really escalated quickly, I’m not ready for testing!” but this is
essentially the point. You have to set up your tests as early as possible so you actually bother using them,
otherwise they become the “next thing” that just never gets done. Have no fear. Testing an API is not only
easy, it is actually really quite fun.

5.2 Concepts & Tools

With an API there are a few things to test, but the most basic idea is “when I request this URL, I want to see
a foo resource”, and “when I throw this JSON at the API, it should a) accept it or b) freak out.”

This can be done in several ways and a lot of people will instantly try to unit-test it, but that quickly becomes
a nightmare. While you might think just writing a bit of code with your favorite HTTP client is simple, if you
have over 50 endpoints and want to do multiple checks per endpoint you end up with a mess of code which
can become hard to maintain, especially if your favorite HTTP client releases a major version with a new
interface.

The more code you have in your tests, the higher the chances of your tests being rubbish - which means you
wont run them. Bad tests also run the risk of false positives, which are super dangerous as they lead you into
thinking your code actually works when it does not.

One very simplistic approach will be to use a BDD (Behaviour Driven Development) tool. A very popular
BDD tool is Cucumber¹ and this is considered by many to be a Ruby tool. It can in fact be used for Python,
PHP and probably a whole bevy of other languages but some of the integrations can be tricky. For the PHP
users here, we will be using Behat which is pretty much the same thing, along with Gherkin² (the same DSL
(Domain-Specific Language) that Cucumber uses, so all of us are on basically the same page.)

The outline of this chapter will be to show how to set up and use the BDD tool Behat, talk through the various
moving parts then show you a working example in our source code inside a Laravel sample app. You can build
your own tests in your own language or in any framework, but just go along with this PHP example to see a
basic working - even if you personally prefer another language. Go on. It wont bite.

5.3 Setup

As a PHP developer you simply need to install Behat, and this can be done with Composer³. It is fair to assume
that if you are using any sort of modern PHP framework you are already familiar with this so I won’t bore
the non-PHP devs by getting stuck into it.

¹http://cukes.info/
²http://docs.behat.org/guides/1.gherkin.html
³http://getcomposer.org/

http://cukes.info/
http://docs.behat.org/guides/1.gherkin.html
http://getcomposer.org/
http://cukes.info/
http://docs.behat.org/guides/1.gherkin.html
http://getcomposer.org/

Endpoint Testing 35

Assuming that composer is installed globally⁴ in your system, to install Behat run:

Install Behat globally with Composer

1 $ composer global require 'behat/behat=2.4.*'

otherwise run: ∼∼∼∼∼∼∼∼ $ php composer.phar global require ‘behat/behat=2.4.*’ ∼∼∼∼∼∼∼∼

In any case, make sure ∼/.composer/vendor/bin/ is added to your $PATH and you should be good to go.

If you are a Ruby user you have the ease of simply running $ gem install cucumber, or shove it in your
Gemfile.

Google should help you with Python.

The rest of this chapter is going to stick purely to PHP for the sake of simplicity, and others can just use the
equivilent commands as we go.

5.4 Initialise

These Behat tests will live in a tests folder, but it may need to co-exist with other unit-tests or other types
of test. For this reason I like to put them in a sub-folder called tests/behat.

I have provided an example of a simple Behat test suite in the sample code which lives inside the app/ folder.
This is done mainly because it is a good place to put your tests and Laravel already has a tests folder, but if
you are using any other framework you can put these tests anywhere you please.

So, go to the app folder:

1 $ cd ~/apisyouwonthate/chapter5/app

The folder structure and basic Behat setup has already been run with the following commands (so you can
skip this step):

1 $ mkdir -p tests/behat && cd tests/behat

2 $ behat --init

This will have the following output:

1 +d features - place your *.feature files here

2 +d features/bootstrap - place bootstrap scripts and static files here

3 +f features/bootstrap/FeatureContext.php - place your feature related code here

The output here outlines the structure of files it has created. Everything lives inside the features/ folder and
this will be where your Behat tests will go. The features/bootstrap/ folder contains only one file at this
point, which is FeatureContext.php.

The default version of this file is a little bare so this sample code contains a beefed up one, which will be used
throughout this chapter.

⁴https://getcomposer.org/doc/00-intro.md#globally

https://getcomposer.org/doc/00-intro.md#globally
https://getcomposer.org/doc/00-intro.md#globally

Endpoint Testing 36

5.5 Features

Features are a way to group your various tests together. For me I keep things fairly simple and consider each
“resource” and “sub-resource” to be its own “feature”.

Looking at our users example from Chapter 2:

Action Endpoint Feature

Create POST /users features/users.feature
Read GET /users/X features/users.feature
Update POST /users/X features/users.feature
Delete DELETE /users/X features/users.feature
List GET /users features/users.feature
Image PUT /users/X/image features/users-image.feature
Favorites GET /users/X/favorites features/users-favorites.feature
Checkins GET /users/X/checkins features/users-checkins.feature

So, anything to do with /places and /places/X would be the same, but as soon as you start looking at
/places/X/checkins that becomes a new feature because we are talking about something else.

You can use that convention or try something else, but this grows pretty well without having a bazillion files
to sift through.

5.6 Scenarios

Gherkin uses “Scenarios” as its core structure and they each contain “steps”. In a unit-testing world the
“scenarios” would be their own “methods”, and the “steps” would be “assertions”.

These Features and Scenarios line up with the “Action Plan” created in Chapter 2. Each RESTful Resource
needs at least one “Feature”, and because each “Action” has an “Endpoint” we need at least one “Scenario”
for each “Action”.

Too much jargon? Time for an example:

1 Feature: Places

2

3 Scenario: Finding a specific place

4 When I request "GET /places/1"

5 Then I get a "200" response

6 And scope into the "data" property

7 And the properties exist:

8 """

9 id

10 name

11 lat

12 lon

13 address1

Endpoint Testing 37

14 address2

15 city

16 state

17 zip

18 website

19 phone

20 """

21 And the "id" property is an integer

22

23 Scenario: Listing all places is not possible

24 When I request "GET /places"

25 Then I get a "400" response

26

27 Scenario: Searching non-existent places

28 When I request "GET /places?q=c800e42c377881f8202e7dae509cf9a516d4eb59&lat=1&lon=1"

29 Then I get a "200" response

30 And the "data" property contains 0 items

31

32 Scenario: Searching places with filters

33 When I request "GET /places?lat=40.76855&lon=-73.9945&q=cheese"

34 Then I get a "200" response

35 And the "pagination" property is an object

36 And the "data" property is an array

37 And scope into the first "data" property

38 And the properties exist:

39 """

40 id

41 name

42 lat

43 lon

44 address1

45 address2

46 city

47 state

48 zip

49 website

50 phone

51 """

52 And reset scope

This uses some custom rules which have been defined in FeatureContext.php but more on that shortly.

The Feature file is called places.feature and has 4 scenarios. One to find a specific place, another to show
that listing all places is not allowed (400 means bad input, your should specify lat lon) and two more to test
how well searching works.

I try to think up the guard clauses that my endpoints will need, then make a “Scenario” for each of those. So,

Endpoint Testing 38

if you don’t send a lat/lon to search then it errors. Test that.

Expecting a boolean value but get a string? Test that:

1 Scenario: Wrong Arguments for user follow

2 Given I have the payload:

3 """

4 {"is_following": "foo"}

5 """

6 When I request "PUT /users/1"

7 Then I get a "400" response

Want to be sure your controllers can handle weird requests with a 404 instead of freaking out and going all
500 Internal Error? Test that.

1 Scenario: Try to find an invalid moments

2 When I request "GET /moments/nope"

3 Then I get a "404" response

Sure you don’t actually have any code yet, but you can write all of these tests based off of nothing but your
“Action Plan” and your Routes. You should use what you know about the output content structure from
Chapter 3 to plan what output you expect to see.

Then all you need to do is… you know… build your entire API.

5.7 Prepping Behat

You are probably wondering how you actually run these tests, because Behat involves making HTTP requests
and you’ve just been writing text-files. Well, the class in FeatureContext.php handles all of that and a lot
more, but first we need to configure Behat so we know what the hostname is going to be for these requests.

1 $ vim app/tests/behat/behat-dev.yml

In this file put in something along the lines of:

1 default:

2 context:

3 parameters:

4 base_url: http://localhost:80000

If you have virtual hosts set up on your machine then use those, and if you are running a local web-server
on a different port then obviously you can use that too. That value could be http://localhost:4000 or
http://dev-api.example.com, it does not matter.

5.8 Running Behat

This is the easiest bit:

Endpoint Testing 39

1 $ behat -c tests/behat/behat-dev.yml

Running this from the sample application should return a lot of green lights because I have gone to the effort
of writing a few very basic feature tests against a few very simple endpoints that return data from an SQLite
database.

Once you have that running I recommend you try and make some tests in your own applications along the
same sort of lines. While we will have sample code to play with for many chapters, I strongly suggest you try
to test your own API (brand new or existing) too, as this is the most value you could get from the book.

Test. TEST. TEST YOUR APPLICATIONS.

Ongoing Testing
Soon I will try and add more complicated test examples to this chapter to show off what can be
done. I will also expand the tests in later chapters as we go to cover the various features being added
like Pagination and Links.

Test Driven Development

Writing tests-first is also a great way to go. Now that you have an understanding of your action plan and
what the endpoints should be and what their output should look like you should be fine to build out tests
again them even if they do not exist.

Running the tests will show you that everything is broken of course, then you just go through and build and
test the endpoints one at a time. This sounds hard but you just cannot afford to mess about with testing on
an API.

Doing this first will save you a lot of hard work down the road. I have the scars to prove it.

6 Outputting Data

6.1 Introduction

In Chapter 3: Input and Output Theory we looked at the theory of the output structure and the pros and cons
for various different formats. The rest of this book assumes you have picked your favorite, and it assumes
that favorite is my favorite. This doesn’t matter all that much but doing everything for everyone would be an
exercise in futility and boredom.

The aim of this chapter is to help you build out your controller endpoints. Assuming you have written tests
for these endpoints before they exist, we can now fill up a few of those tests with green lights instead of the
omnishambles of errors and fails you are most likely facing.

The examples in the first section will be trying to show off a list of places, and show of one specific place:

1 {

2 "data": [

3 {

4 "id": 2,

5 "name": "Videology",

6 "lat": 40.713857,

7 "lon": -73.961936,

8 "created_at": "2013-04-02"

9 },

10 {

11 "id": 1,

12 "name": "Barcade",

13 "lat": 40.712017,

14 "lon": -73.950995,

15 "created_at": "2012-09-23"

16 }

17]

18 }

Outputting Data 41

1 {

2 "data": [

3 "id": 2,

4 "name": "Videology",

5 "lat": 40.713857,

6 "lon": -73.961936,

7 "created_at": "2013-04-02"

8]

9 }

6.2 The Direct Approach

The first thing that every developer tries to do is take their favorite ORM, ODM, DataMapper or Query Builder,
pull up a query and wang that result directly into the output.

Dangerously bad example of passing data from the database directly as output

1 <?php

2 class PlaceController extends ApiController

3 {

4 public function show($id)

5 {

6 return json_encode([

7 'data' => Place::find($id)->toArray(),

8]);

9 }

10

11 public function index()

12 {

13 return json_encode([

14 'data' => Place::all()->toArray(),

15]);

16 }

17 }

This is the absolute worst idea you could have for enough reasons for me to fill up a chapter on its own, but
I will try to keep it to just a section.

ORMs in Controllers
Your controller should definitely not have this sort of ORM/Query Builder logic scattered around
the methods. This is done to keep the example to one class.

Performance: If you return “all” items then that will be fine during development, but suck when you have a
thousand records in that table… or a million.

Outputting Data 42

Display: PHP’s popular SQL extensions all type-cast all data coming out of a query as a string, so if you have
a MySQL “boolean” field (generally this is a tinyint(1) field with a value of 0 or 1) will display in the JSON
output as a string, with a value of "0" or "1" which is lunacy. If you’re using PostgreSQL it is even worse,
the value directly output by PHP’s PostgreSQL driver is "f" or "t". Your mobile developers won’t like it one
bit, and anyone looking at your public API is going to immediately consider this an amateur API. You want
true or false as an actual JSON boolean, not a numeric string or a char(1).

Security: Outputting all fields can lead to API clients (users of all sorts) being able to view your users
passwords, see sensitive information like email addresses for businesses involved (venues, partners, events,
etc), gain access to secret keys and tokens generally not allowed. If you leak your forgotten password tokens
for example then you’re going to have an EXTREMELY bad time, its as bad as leaking the password itself.

Some ORM’s have a “hidden” option to hide specific fields from being output. If you can promise that you
and every single other developer on your team (now, next year and for the entire lifetime of this application)
will remember about that then congratulations, you could also achieve world peace with a team that focused.

Stability: If you change the name of a database field, or modify your MongoDB document, or change the
statuses available for a field between v3 and v4 then your API will continue to behave perfectly, but all of
your iPhone users are going to have busted crashing applications and it is your fault. You will promise yourself
that you won’t change things, but you absolutely will. Change happens.

So, next our theoretical developer friend will try hard-coding the output.

Laborious example of type-casting and formatting data for output

1 <?php

2 class PlaceController extends ApiController

3 {

4 public function show($id)

5 {

6 $place = Place::find($id);

7

8 return json_encode([

9 'data' => [

10 'id' => (int) $place->id,

11 'name' => $place->name,

12 'lat' => (float) $place->lat,

13 'lon' => (float) $place->lon,

14 'created_at' => (string) $place->created_at,

15],

16]);

17 }

18

19 public function index()

20 {

21 $places = array();

22

23 foreach (Place::all() as $place) {

Outputting Data 43

24 $places[] = [

25 'id' => (int) $place->id,

26 'name' => $place->name,

27 'lat' => (float) $place->lat,

28 'lon' => (float) $place->lon,

29 'created_at' => (string) $place->created_at,

30];

31 }

32

33 return json_encode([

34 'data' => $places,

35]);

36 }

37 }

Thanks to specifying exactly what fields to return in the JSON array the security issues are taken care of.
The type-casting of various fields turn numeric strings into integers, coordinates into floats, and that pesky
Carbon (DateTime) object from Laravel into a string, instead of letting the object turn itself into an array.

The only issue this has not taken care of from the above example is performance, but that is a job for pagination
which will be covered in Chapter 10.

A new issue has however been created, which should be a fairly obvious one: This is icky. Our theoretical
developer now tries something else.

Considerably better approach to formatting data for output

1 <?php

2 class PlaceController extends ApiController

3 {

4 public function show($id)

5 {

6 $place = Place::find($id);

7

8 return json_encode([

9 'data' => $this->transformPlaceToJson($place),

10]);

11 }

12

13 public function index()

14 {

15 $places = array();

16 foreach (Place::all() as $place) {

17 $places[] = $this->transformPlaceToJson($place);

18 }

19

20 return json_encode([

Outputting Data 44

21 'data' => $places,

22]);

23 }

24

25 private function transformPlaceToJson(Place $place)

26 {

27 return [

28 'id' => (int) $place->id,

29 'name' => $place->name,

30 'lat' => (float) $place->lat,

31 'lon' => (float) $place->lon,

32 'created_at' => (string) $place->created_at,

33];

34 }

35 }

Certainly much better, but what if a different controller wants to show a place at any point? You could
theoretically move all of these transform methods to a new class or shove them in the ApiController, but
that would just be odd.

Really you want to make what I have come to call “Transformers”, partially because the name is awesome
and because that is what they are doing.

These are essentially just classeswhich have a transformmethod, which does the same as the transformPlaceToJson()
above, but to avoid you having to learn how to make your own I have released a PHP package which takes
care of it: Fractal¹.

6.3 Transformations with Fractal

With Fractal, Transformers are created as either a callback or an instance of an object implementing
League\Fractal\TransformerAbstract. They do exactly the job that our transformPlaceToJson() method
did but they live on their own, are easily unit-testable (if that floats your boat) and remove a lot of presentation
clutter from the controller.

Fractal does a lot more than that which will be explored later on, but it covers concerns with transformation
perfectly, removes the security, stability and display concerns addressed earlier.

While other languages have great solutions for this already, PHP seemed to be rather lacking for this exact
purpose. Some call it “Data Marshalling” or “Nested Serialization”, but it is all achieving roughly the same
goal: take potentially complicated data from a range of stores and turn it into a consistent output.

• Jbuilder² looks fairly slick for the Ruby crowd
• Tweet other suggestions to @philsturgeon

¹https://packagist.org/packages/league/fractal
²https://github.com/rails/jbuilder

https://packagist.org/packages/league/fractal
https://github.com/rails/jbuilder
https://packagist.org/packages/league/fractal
https://github.com/rails/jbuilder

Outputting Data 45

That is the end of theory in this book. We will now be working with code. Open up the Sample Code ZIP file
or head to the GitHub repo³ and extract it somewhere useful.

1 $ cd chapter6

2 $ php artisan serve

3 Laravel development server started on http://localhost:8000

Open your browser and go to http://localhost:8000/places, and there is a list of places looking like this:

³https://github.com/philsturgeon/build-apis-you-wont-hate

https://github.com/philsturgeon/build-apis-you-wont-hate
https://github.com/philsturgeon/build-apis-you-wont-hate

Outputting Data 46

Fractal default JSON structure using the JSONView extension for Chrome

This is a Laravel 4 application but only because it has migrations and seeding and I like it. This is made up of
a few bits of PHP that would work in any framework, and the approach works in any language.

Outputting Data 47

• composer.json - Added an autoloadable folder using PSR-0 to allow my own code to be loaded
• app/controllers/ApiController.php - Insanely simple base controller for wrapping responses
• app/controllers/PlaceController.php - Grab some data and pass it to the ApiController

Other than defining some basic GET routes in app/routes.php that is basically all that is being done.

The PlaceController looks like this:

Example of a controller using Fractal to output data

1 <?php

2 use App\Transformer\PlaceTransformer;

3

4 class PlaceController extends ApiController

5 {

6 public function index()

7 {

8 $places = Place::take(10)->get();

9 return $this->respondWithCollection($places, new PlaceTransformer);

10 }

11

12 public function show($id)

13 {

14 $place = Place::find($id);

15 return $this->respondWithItem($place, new PlaceTransformer);

16 }

17 }

The “raw data” (happens to be an ORM model but could be anything) is sent back with the appropriate
convenience method and a transformer instance is provided too. These respondWithCollection() and
respondWithItem() methods come from ApiController, and their job is just to create Fractal instances
without exposing as many classes to interact with.

The PlaceTransformer looks like this:

1 <?php namespace App\Transformer;

2

3 use Place;

4 use League\Fractal\TransformerAbstract;

5

6 class PlaceTransformer extends TransformerAbstract

7 {

8 /**

9 * Turn this item object into a generic array

10 *

11 * @return array

Outputting Data 48

12 */

13 public function transform(Place $place)

14 {

15 return [

16 'id' => (int) $place->id,

17 'name' => $place->name,

18 'lat' => (float) $place->lat,

19 'lon' => (float) $place->lon,

20 'address1' => $place->address1,

21 'address2' => $place->address2,

22 'city' => $place->city,

23 'state' => $place->state,

24 'zip' => (float) $place->zip,

25 'website' => $place->website,

26 'phone' => $place->phone,

27];

28 }

29 }

Simple.

The ApiController is kept super simple at this point too:

Simple ApiController for basic responses using Fractal

1 <?php

2

3 use League\Fractal\Resource\Collection;

4 use League\Fractal\Resource\Item;

5 use League\Fractal\Manager;

6

7 class ApiController extends Controller

8 {

9 protected $statusCode = 200;

10

11 public function __construct(Manager $fractal)

12 {

13 $this->fractal = $fractal;

14 }

15

16 public function getStatusCode()

17 {

18 return $this->statusCode;

19 }

20

21 public function setStatusCode($statusCode)

Outputting Data 49

22 {

23 $this->statusCode = $statusCode;

24 return $this;

25 }

26

27 protected function respondWithItem($item, $callback)

28 {

29 $resource = new Item($item, $callback);

30

31 $rootScope = $this->fractal->createData($resource);

32

33 return $this->respondWithArray($rootScope->toArray());

34 }

35

36 protected function respondWithCollection($collection, $callback)

37 {

38 $resource = new Collection($collection, $callback);

39

40 $rootScope = $this->fractal->createData($resource);

41

42 return $this->respondWithArray($rootScope->toArray());

43 }

44

45 protected function respondWithArray(array $array, array $headers = [])

46 {

47 return Response::json($array, $this->statusCode, $headers);

48 }

49

50 }

The method respondWithArray() takes a general array to convert into JSON, which will prove useful with
errors. Other than that everything you return will be a Fractal Item, or a Collection.

6.4 Hiding Schema Updates

Schema updates happen, and they can be hard to avoid. If the change in question is simply a renamed field
then this is insanely easy to handle:

Before

1 'website' => $place->website,

After

Outputting Data 50

1 'website' => $place->url,

By changing the right (our internal data structure) and keeping the left the same (the external field name) we
maintain control over the stability for the client applications.

Sometimes it is a status change. A new status is added, or the change is fairly drastic and the status all change,
but the old API version is still expecting the old one. Maybe someone changed “available” to “active” to be
consistent with the other tables, because the original developer was as consistent and logical as a rabid ferret.

Before

1 'status' => $place->status,

After

1 'status' => $place->status === 'available' ? 'active' : $place->status,

Gross, but useful.

6.5 Outputting Errors

Exactly how to output errors is something I personally am still toying with. The current front-runner is adding
conveniencemethods to the ApiController which handle global routes with a constant as the code and a HTTP
error code set, with an optional message in case I want to override the message.

Simple error codes and responses added to ApiController

1 <?php

2

3 // ...

4

5 class ApiController extends Controller

6 {

7 // ...

8

9 const CODE_WRONG_ARGS = 'GEN-FUBARGS';

10 const CODE_NOT_FOUND = 'GEN-LIKETHEWIND';

11 const CODE_INTERNAL_ERROR = 'GEN-AAAGGH';

12 const CODE_UNAUTHORIZED = 'GEN-MAYBGTFO';

13 const CODE_FORBIDDEN = 'GEN-GTFO';

14

15 // ...

16

17 protected function respondWithError($message, $errorCode)

18 {

Outputting Data 51

19 if ($this->statusCode === 200) {

20 trigger_error(

21 "You better have a really good reason for erroring on a 200...",

22 E_USER_WARNING

23);

24 }

25

26 return $this->respondWithArray([

27 'error' => [

28 'code' => $errorCode,

29 'http_code' => $this->statusCode,

30 'message' => $message,

31]

32]);

33 }

34

35 /**

36 * Generates a Response with a 403 HTTP header and a given message.

37 *

38 * @return Response

39 */

40 public function errorForbidden($message = 'Forbidden')

41 {

42 return $this->setStatusCode(403)->respondWithError($message, self::CODE_FORBIDDEN);

43 }

44

45 /**

46 * Generates a Response with a 500 HTTP header and a given message.

47 *

48 * @return Response

49 */

50 public function errorInternalError($message = 'Internal Error')

51 {

52 return $this->setStatusCode(500)->respondWithError($message, self::CODE_INTERNAL_E\

53 RROR);

54 }

55

56 /**

57 * Generates a Response with a 404 HTTP header and a given message.

58 *

59 * @return Response

60 */

61 public function errorNotFound($message = 'Resource Not Found')

62 {

63 return $this->setStatusCode(404)->respondWithError($message, self::CODE_NOT_FOUND);

Outputting Data 52

64 }

65

66 /**

67 * Generates a Response with a 401 HTTP header and a given message.

68 *

69 * @return Response

70 */

71 public function errorUnauthorized($message = 'Unauthorized')

72 {

73 return $this->setStatusCode(401)->respondWithError($message, self::CODE_UNAUTHORIZ\

74 ED);

75 }

76

77 /**

78 * Generates a Response with a 400 HTTP header and a given message.

79 *

80 * @return Response

81 */

82 public function errorWrongArgs($message = 'Wrong Arguments')

83 {

84 return $this->setStatusCode(400)->respondWithError($message, self::CODE_WRONG_ARGS\

85);

86 }

This basically allows for generic error messages to be returned in your controller without having to think too
much about the specifics.

Controller using Fractal, combined with a simple error response

1 <?php

2 use App\Transformer\PlaceTransformer;

3

4 class PlaceController extends ApiController

5 {

6 public function index()

7 {

8 $places = Place::take(10)->get();

9 return $this->respondWithCollection($places, new PlaceTransformer);

10 }

11

12 public function show($id)

13 {

14 $place = Place::find($id);

15

16 if (! $place) {

Outputting Data 53

17 return $this->errorNotFound('Did you just invent an ID and try loading a place? M\

18 uppet.');

19 }

20

21 return $this->respondWithItem($place, new PlaceTransformer);

22 }

23 }

Other “Place” specific errors could go directly into the PlaceController as methods just like these, with their
own constants in the controller, picking a statusCode in the method or relying on one as an argument.

6.6 Testing this Output

You have already seen how to test your endpoints using the Gherkin syntax in Chapter 5: Endpoint Testing,
so we can apply that testing logic to this output:

1 Feature: Places

2

3 Scenario: Listing places without search criteria is not possible

4 When I request "GET /places"

5 Then I get a "400" response

6

7 Scenario: Finding a specific place

8 When I request "GET /places/1"

9 Then I get a "200" response

10 And scope into the "data" property

11 And the properties exist:

12 """

13 id

14 name

15 lat

16 lon

17 address1

18 address2

19 city

20 state

21 zip

22 website

23 phone

24 created_at

25 """

26 And the "id" property is an integer

27

28 Scenario: Searching non-existent place

Outputting Data 54

29 When I request "GET /places?q=c800e42c377881f8202e7dae509cf9a516d4eb59&lat=1&lon=1"

30 Then I get a "200" response

31 And the "data" property contains 0 items

32

33

34 Scenario: Searching places with filters

35 When I request "GET /places?lat=40.76855&lon=-73.9945&q=cheese"

36 Then I get a "200" response

37 And the "data" property is an array

38 And scope into the first "data" property

39 And the properties exist:

40 """

41 id

42 name

43 lat

44 lon

45 address1

46 address2

47 city

48 state

49 zip

50 website

51 phone

52 created_at

53 """

54 And reset scope

This is again using the FeatureContext.php provided in the sample code, which makes it really easy to test
output. We are again assuming that all output is in a "data" element, which is either an object (when one
resource has been requested) or an array of objects (multiple resources or a collection have been requested).

When you are searching for data you want to ensure that not finding any data doesn’t explode. This can be
down to your controller processing on output and failing because what should be an array is null, or because
some PHP collection class is missing methods, etc. This is why we perform the search with a hardcoded
invalid search term, then check that it returns an empty collection:

1 {

2 "data": []

3 }

The line And the "data" property contains 0 items will cover this. Then we can search for valid terms,
knowing that our database seeder has made sure at least one Place has the keyword “cheese” in the name.
Using the line And scope into the first "data" property the scope changes to be inside the first data
item returned, and the properties can be checked for existence too. If no data, or required fields are missing,
this test will fail.

Outputting Data 55

6.7 Homework

Your homework is to take apart the sample application, fit it into your API and try to build valid output for
as many of your GET endpoints as possible. Check the data types and make sure the array structure is being
output in the way you expect using the test example above.

With valid output covered and basic errors covered, what is next? The most complicated part of API
generation, which at some point every developer has to try and work out: embedding/nesting resources,
or making “relationships”.

7 Data Relationships

7.1 Introduction

If you’ve ever worked with relational databases the chances are you understand relationships. Users have
comments. Authors have one or many books. Books belong to a Publisher. Southerners have one or more
teeth. Whatever the example, relationships are incredibly important to any application and therefore an API
too.

RESTful Relationships don’t necessarily need to be directly mapped to database relationships. If your database
relationships are built properly, RESTful relationships will often be similar, but your RESTful output might
have extra dynamic relationships that aren’t defined by a JOIN, and might not necessarily include every
possible database relationship.

Put more eloquently:

REST components communicate by transferring a representation of a resource in a format
matching one of an evolving set of standard data types, selected dynamically based on the
capabilities or desires of the recipient and the nature of the resource. Whether the representation
is in the same format as the raw source, or is derived from the source, remains hidden behind the
interface. – Roy Fielding¹

This explanation highlights an important factor: the output has to be based on the “desires of the recipient”.
There are many popular approaches to designing RESTful relationships, but many of them don’t satisfy the
“desires of the recipient”. Still, I will cover the popular approaches with their pros and cons regardless.

7.2 Sub-Resources

One very simplistic way to approach related data is to offer up new URL’s for your API consumers to digest.
This was covered lightly in Chapter 2: Planning and Creating Endpoints, and is a perfectly valid approach.

If an API has places as a resource and wants to allow access to a place’s checkins, an endpoint could be made
to handle exactly that:

/places/X/checkins

The downside here is that it is an extra HTTP request. Imagine an iPhone application that wants to get
all places in an area and put them on a map, then allow a user to browse through them. If the place search
happens as one request, then the /places/X/checkins is executed each time the user clicks on a place, forcing

¹http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2

Data Relationships 57

the user to do a lot of unecessary waiting. This is known as 1 + n, meaning the work done is increased by an
extra one request for each place you look up.

That also assumes the only related data is checkins. At Kapture our API also has merchant, images, current_-
campaign and previous_campaigns to look up. Using “sub-resources” only would mean that four extra HTTP
requests per place need to happen, which is 1 + 4n.

If 50 places were returned and each time the related data had to be loaded, assuming the app user looked
through all 50 places there would be 1 initial request to get 50 results. For each of those results would be 4
more, meaning: 1 + (50 x 4) = 251. 251 HTTP requests happening (even assuming they are asyncronous)
is just unnecessary and going over HTTP on a mobile is the slowest things you can do. Even with caching,
depending on the data set, it could still be 251 requests.

Some API developers try to avoid going over HTTP too many times by shoving as much data as possible
into one request, so when you call the /places endpoint you automatically get checkins, current_opps,
merchants and images. Well, if you do not want that information you are waiting for huge file downloads
full of irrelevant JSON! Even with GZIP compression enabled on the web-server, downloading something you
don’t need is obviously not desirable, and can be avoided. This can mean major performance gains on mobile,
and minor gains over a slow network or weak Wi-Fi for desktop or tablets.

The trade-off here between “downloading enough data to avoid making the user wait for subsequent loads”
and “downloading too much data to make them wait for the initial load” is hard. An API needs the flexibility
and making sub-resources the only way to load related data is restrictive for the API consumer.

7.3 Foreign Key Arrays

Another approach to related data is to provide an array of foreign keys in the output. To use an example from
EmberJS², if a post has multiple comments, the /posts endpoint could contain the following:

1 {

2 "post": {

3 "id": 1

4 "title": "Progressive Enhancement is Dead",

5 "comments": ["1", "2"],

6 "_links": {

7 "user": "/people/tomdale"

8 }

9 }

10 }

This is better. You still end up with n + 1 requests, but at least you can take those ID’s and make a grouped
request like /comments/1,2 or /comments?ids=1,2 to reduce how many HTTP requests are being made.

Back to the places example, if you have 50 places returned and need 4 extra pieces of data, you could iterate
through the 50, map which items expect which pieces of data, request all unique pieces of data and only end
up with 1 + 4 = 5 HTTP requests instead of 251.

²http://emberjs.com/guides/models/defining-models/

http://emberjs.com/guides/models/defining-models/
http://emberjs.com/guides/models/defining-models/
http://emberjs.com/guides/models/defining-models/

Data Relationships 58

The downside is that the API consumer has to stitch all of that data together, which could be a lot of work for
a large dataset.

7.4 Compound Documents (a.k.a Side-Loading)

Instead of just putting the foreign keys into the resource you can optionally side-load the data. I was having
a rough time of things trying to word an introduction, so I will let somebody else do it:

Compound documents contain multiple collections to allow for side-loading of related objects.
Side-loading is desirable when nested representation of related objects would result in potentially
expensive repetition. For example, given a list of 50 comments by only 3 authors, a nested
representationwould include 50 author objects where a side-loaded representationwould contain
only 3 author objects.
– Source: canvas.instructure.com³

I found that by searching for “compound document”. I found that term by searching for “REST Side-Loading”.
I found that after having a horrible time with EmberJS forcing me to use the “side-loading” approach for
Ember Data, and they barely explain it themselves.

It looks a little like this:

1 {

2 "meta": {"primaryCollection": "comments"},

3 "comments": [...],

4 "authors": [...]

5 }

The pro suggested in the quote above is: if an embedded piece of data is commonly recurring, you do not have
to download the same resource multiple times. The con is that context gets lost in larger data structures and
it has the same issue as the “Foreign Key Array”: the mapping of data to create an accurate structure is left to
the API consumer, and that can be hard work.

7.5 Embedded Documents (a.k.a Nesting)

This is the approach I have been using in the latest two versions of the API at Kapture, and I will continue
to use it for the foreseeable future. It offers the most flexibility for the API consumer: meaning it can reduce
HTTP requests or reduce download size depending on what the consumer wants.

If an API consumer were to call the URL /places?embed=checkins,merchant then they would see checkin
and merchant data in the response inside the place resource:

³https://canvas.instructure.com/doc/api/file.compound_documents.html

https://canvas.instructure.com/doc/api/file.compound_documents.html
https://canvas.instructure.com/doc/api/file.compound_documents.html

Data Relationships 59

1 {

2 "data": [

3 {

4 "id": 2,

5 "name": "Videology",

6 "lat": 40.713857,

7 "lon": -73.961936,

8 "created_at": "2013-04-02",

9 "checkins" : [

10 // ...

11],

12 "merchant" : {

13 // ...

14 }

15 },

16 {

17 "id": 1,

18 "name": "Barcade",

19 "lat": 40.712017,

20 "lon": -73.950995,

21 "created_at": "2012-09-23",

22 "checkins" : [

23 // ...

24],

25 "merchant" : {

26 // ...

27 }

28 }

29]

30 }

Some systems (like Facebook, or any API using Fractal) will let you nest those embeds with dot notation:

E.g: /places?embed=checkins,merchant,current_opp.images

Embedding with Fractal

Picking back up from Chapter 6, your transformer at this point is mainly just giving you a method to handle
array conversion from your data source to a simple array. Fractal can however embed resources and collections
too. Continuing the theme of users, places and checkins, the UserTransformer might have a checkins list, to
see a user’s checkin history.

Data Relationships 60

UserTransformer using Fractal

1 <?php namespace App\Transformer;

2

3 use User;

4

5 use League\Fractal\TransformerAbstract;

6

7 class UserTransformer extends TransformerAbstract

8 {

9 protected $availableEmbeds = [

10 'checkins'

11];

12

13 /**

14 * Turn this item object into a generic array

15 *

16 * @return array

17 */

18 public function transform(User $user)

19 {

20 return [

21 'id' => (int) $user->id,

22 'name' => $user->name,

23 'bio' => $user->bio,

24 'gender' => $user->gender,

25 'location' => $user->location,

26 'birthday' => $user->birthday,

27 'joined' => (string) $user->created_at,

28];

29 }

30

31 /**

32 * Embed Checkins

33 *

34 * @return League\Fractal\Resource\Collection

35 */

36 public function embedCheckins(User $user)

37 {

38 $checkins = $user->checkins;

39

40 return $this->collection($checkins, new CheckinTransformer);

41 }

42 }

Data Relationships 61

The CheckinTransfer can then have both a user and a place. There is no benefit to requesting the user in this
context, because we know that already, but asking for the place would return information about the location
that is being checked into.

CheckinTransformer using Fractal

1 <?php namespace App\Transformer;

2

3 use Checkin;

4 use League\Fractal\TransformerAbstract;

5

6 class CheckinTransformer extends TransformerAbstract

7 {

8 /**

9 * List of resources possible to embed via this processor

10 *

11 * @var array

12 */

13 protected $availableEmbeds = [

14 'place',

15 'user',

16];

17

18 /**

19 * Turn this item object into a generic array

20 *

21 * @return array

22 */

23 public function transform(Checkin $checkin)

24 {

25 return [

26 'id' => (int) $checkin->id,

27 'created_at' => (string) $checkin->created_at,

28];

29 }

30

31 /**

32 * Embed Place

33 *

34 * @return League\Fractal\Resource\Item

35 */

36 public function embedPlace(Checkin $checkin)

37 {

38 $place = $checkin->place;

39

40 return $this->item($place, new PlaceTransformer);

Data Relationships 62

41 }

42

43 /**

44 * Embed User

45 *

46 * @return League\Fractal\Resource\Item

47 */

48 public function embedUser(Checkin $checkin)

49 {

50 $user = $checkin->user;

51

52 return $this->item($user, new UserTransformer);

53 }

54 }

These examples happen to be using the lazy-loading functionality of an ORM for $user->checkins and
$checkin->place, but there is no reason that eager-loading could not also be used by inspecting the
$_GET['embed'] list of requested scopes. Something like this can easily go in your controller constructor,
somewhere in the base controller or… something:

Example of user input dictating which Eloquent ORM (Laravel) relationships to eager-load

1 $requestedEmbeds = Input::get('embed'); // ['checkins', 'place'] or just ['place']

2

3 // Left is relationship names. Right is embed names.

4 // Avoids exposing relationships and whatever not directly set

5 $possibleRelationships = [

6 'checkins' => 'checkins',

7 'venue' => 'place',

8];

9

10 // Check for potential ORM relationships, and convert from generic "embed" names

11 $eagerLoad = array_keys(array_intersect($possibleRelationships, $requestedEmbeds));

12

13 $books = Book::with($eagerLoad)->get();

14

15 // do the usual fractal stuff

Having the following code somewhere in the ApiController, or in your bootstrap, will make this all work:

Data Relationships 63

1 class ApiController

2 {

3 // ...

4

5 public function __construct(Manager $fractal)

6 {

7 $this->fractal = $fractal;

8

9 // Are we going to try and include embedded data?

10 $this->fractal->setRequestedScopes(explode(',', Input::get('embed')));

11 }

12

13 // ...

14 }

That’s how you’d do things in Laravel at least.

Embedding with Rails

The Rails lot are big fans of their ActiveRecord package, and most suggest to use it to embed data. The specific
part is in the Serializaton::to_json Documentation⁴.

To include associations, use blog.to_json(:include => :posts).

1 {

2 "id": 1, "name": "Konata Izumi", "age": 16,

3 "created_at": "2006/08/01", "awesome": true,

4 "posts": [{

5 "id": 1,

6 "author_id": 1,

7 "title": "Welcome to the weblog"

8 }, {

9 "id": 2,

10 author_id: 1,

11 "title": "So I was thinking"

12 }]

13 }

2nd level and higher order associations work as well.

⁴http://apidock.com/rails/ActiveRecord/Serialization/to_json

http://apidock.com/rails/ActiveRecord/Serialization/to_json
http://apidock.com/rails/ActiveRecord/Serialization/to_json

Data Relationships 64

1 blog.to_json(:include => {

2 :posts => {

3 :include => {

4 :comments => {

5 :only => :body

6 }

7 },

8 :only => :title

9 }

10 })

A little more complicated, but you get more control over what is returned.

1 {

2 "id": 1,

3 "name": "Konata Izumi",

4 "age": 16,

5 "created_at": "2006/08/01",

6 "awesome": true,

7 "posts": [{

8 "comments": [{

9 "body": "1st post!"

10 }, {

11 "body": "Second!"

12 }],

13 "title": "Welcome to the weblog"

14 },

15 {

16 "comments": [{

17 "body": "Don't think too hard"

18 }],

19 "title": "So I was thinking"

20 }]

21 }

This will work well assuming everything is represented as ActiveRecord, which who knows, it might be.

Being a RESTful Rebel

I read a blog article by Ian Bentley⁵ suggesting that this approach is not entirely RESTful. It points to a Roy
Fielding quote:

⁵http://idbentley.com/blog/2013/03/14/should-restful-apis-include-relationships/

http://idbentley.com/blog/2013/03/14/should-restful-apis-include-relationships/
http://idbentley.com/blog/2013/03/14/should-restful-apis-include-relationships/

Data Relationships 65

The central feature that distinguishes the REST architectural style from other network-based
styles is its emphasis on a uniform interface between components (Figure 5-6). By applying
the software engineering principle of generality to the component interface, the overall system
architecture is simplified and the visibility of interactions is improved. Roy Fielding⁶

All of these solutions are - according to somebody - “wrong”. There are technical pros and cons and what I
refer to as “moral” issues, but those moral issues are just down to how technically RESTful you care about
being. The technical benefits that optional embedded relationships provide are so beneficial I do not care
about crossing Roy and his RESTful spec to do it.

Make your own choices. Facebook, Twitter and most popular “RESTful API’s” fundamentally ignore parts of
(or dump all over the entirety of) the RESTful spec. So, respecting everything else and popping your toe over
the line here a little would not be the biggest travesty for your API.

⁶http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1

8 Debugging

8.1 Introduction

Debugging is the art of working out why something is broken, which can be pretty difficult in an API. In
much of web development you are simply looking at what is output to the page, overusing var_dump() or
checking the browsers console for JavaScript errors. Working with an API you are mostly just working with
Requests and Responses, but you need to initiate these requests in a repeatable way, often with full control
over all of the HTTP Headers, Body content, etc.

There are a few methods you can utilize for debugging:

• Command-line Debugging
• Browser Debugging
• Network Debugging

8.2 Command-line Debugging

Debugging via the command-line using tools like curl are a great option for some. They tout the benefits of
being able to do it from inside a network firewall. Certainly this can be an option for debugging live servers,
but for development purposes (which is what we are doing here) then using curl is just a lot of commands to
remember for no reason.

1 $ curl -X POST http://localhost/places/fg345d/checkins --data @payload.json

It is not the most complicated way to initiate a request, but it is not the easiest. You will need to update that
payload.json each time, or have a bunch of JSON in the CLI, and either way that is a pain in the backside
when you have a lot of endpoints with lots of potential values.

8.3 Browser Debugging

Working in the browser is a great way to do things and developers are fairly used to it. Sadly most browsers
can only really handle GET and POST requests by default, and a RESTful API requires PUT, DELETE, PATCH, etc
too. A well built RESTful API will also require the use of HTTP Headers, which can be difficult to manipulate
in a browser, as they are built to handle all of that for you.

Debugging 67

HTTP Clients

Called “HTTP Clients” or “REST Client” interchangeably, these bits of software help perfectly with the job this
book sets out to achieve: building non-trivial APIs. They allow you to format your HTTP Request through
a convenient GUI, choosing the HTTP verb, adding headers, entering a body, etc then present the HTTP
Response to you with formatting or in source view if you prefer. Many of these GUIs will let you save common
requests or build “collections” much like a set of bookmarks, but for your endpoints and with all the correct
headers and values.

These clients exist for Windows, OSX and Linux but one that has really stood out to me is a Chrome extension
called Postman¹.

Postman HTTP Client, showing a collection and a sucessful JSON response

I have a collection which almost mirrors my Behat tests, and have at least one for each endpoint - some with
more.

Using Postman I can develop “in the browser” and see errors easily, and keep changing things and clicking
“Send” for as long as I have to to make it work. When I expect it to work I run the Behat scenario that covers
the endpoint, and see if the tests are green. If Behat fails and the errors are not enough to resolve the problem
then simply go back to Postman and try again.

Repeat until the endpoint “works”, and passes the test.

¹http://getpostman.com

http://getpostman.com
http://getpostman.com

Debugging 68

Debug Panel

The approach above works fine if the problem is one that you can see. Anything to do with a slow page
return, silent fails, unexpected results, etc. all need more information, and to do that you probably need
another extension.

RailsPanel² - Chrome-only DevTool panel with logging and profiling for Ruby on Rails. (RailsCasts Video³).

Clockwork⁴ - Chrome DevTool panel and standalone web app with logging and profiling for PHP.

Chrome Logger⁵ - Chrome Logger only for Python, PHP, Ruby, Node, .NET, CF and Go.

The first two are very similar and are the most feature filled, but the latter covers basic logging for the wider
selection of languages.

Sure these examples are mostly Chrome. There are probably alternatives, but either way there is no harm in
having Chrome as your “Development Browser” and keep on using your favorite for general browsing.

²https://github.com/dejan/rails_panel
³http://railscasts.com/episodes/402-better-errors-railspanel?view=asciicast
⁴https://github.com/itsgoingd/clockwork-chrome
⁵http://craig.is/writing/chrome-logger

https://github.com/dejan/rails_panel
http://railscasts.com/episodes/402-better-errors-railspanel?view=asciicast
https://github.com/itsgoingd/clockwork-chrome
http://craig.is/writing/chrome-logger
https://github.com/dejan/rails_panel
http://railscasts.com/episodes/402-better-errors-railspanel?view=asciicast
https://github.com/itsgoingd/clockwork-chrome
http://craig.is/writing/chrome-logger

Debugging 69

Clockwork showing the Laravel timeline in Chromium Browser

This timeline can be useful for working out where things are slowing down. Define your own events to see
where the time is going.

Seeing logs in this panel is another benefit, and it helps keep you from switching back to the console all the
time to catch the output of your logs via tail -f. Certainly you should be in the command line anyway, but
constantly hitting Alt+Tab can cause distractions which slow you down.

For those of you who normally debug with var_dump() or breakpoints, you could simply use Clock-
work/RailsPanel/Chrome Logger to do it, and see it in the panel - leaving your output untouched and avoiding
tricky setup with IDE or other GUI programs.

Debugging 70

CheckinTransformer using Fractal, with added Logging

1 <?php namespace App\Transformer;

2

3 use Checkin;

4 use Log;

5

6 use League\Fractal\TransformerAbstract;

7

8 class CheckinTransformer extends TransformerAbstract

9 {

10 /**

11 * List of resources possible to embed via this processor

12 *

13 * @var array

14 */

15 protected $availableEmbeds = [

16 'place',

17 'user',

18];

19

20 /**

21 * Turn this item object into a generic array

22 *

23 * @return array

24 */

25 public function transform(Checkin $checkin)

26 {

27 return [

28 'id' => (int) $checkin->id,

29 'created_at' => (string) $checkin->created_at,

30];

31 }

32

33 /**

34 * Embed Place

35 *

36 * @return League\Fractal\Resource\Item

37 */

38 public function embedPlace(Checkin $checkin)

39 {

40 $place = $checkin->place;

41

42 Log::info("Embedding place-{$place->id} into checkin-{$checkin->id}");

43

44 return $this->item($place, new PlaceTransformer);

Debugging 71

45 }

46

47 /**

48 * Embed User

49 *

50 * @return League\Fractal\Resource\Item

51 */

52 public function embedUser(Checkin $checkin)

53 {

54 $user = $checkin->user;

55

56 Log::info("Embedding user-{$user->id} into checkin-{$checkin->id}");

57

58 return $this->item($user, new UserTransformer);

59 }

60 }

That will look a little something like this:

Clockwork showing the Log in Chromium Browser

You can log arrays and objects too:

Debugging 72

Clockwork showing the Log in Chromium Browser

If logging something cannot help you with a problem, you need to log more things. Eventually you will work
it out.

8.4 Network Debugging

The previously mentioned approaches to debugging are very much about being in control: create a Request,
see what happens with the Response. Sometimes you need to debug what is happening to your API when the
requests are not completely in control. If your iPhone developer comes over and says “the API is broken” it
can be hard to work out why.

If you know exactly what endpoint is being hit and what the error is (because the iPhone dev is pointing to
some debug data on his XCode screen) then maybe you can fix it, but often you will need more insight before
you can recreate it. Maybe it is not even a request that you can recreate easily (or at all) like anything to do
with upload images as a PUT after getting them from the camera, or there are multiple requests that the iPhone
app is executing in order using data from the previous requests.

Whatever the reason, sometimes you need to debug network activity to find out what is actually happening,
by spying on the Request and getting the Response.

Charles

If these are non-production errors that you want to debug against your local API and development iOS devices
(a.k.a the iPhone 4S you have not sold on eBay yet) then a great application is Charles⁶.

Charles essentially acts as a HTTP proxy, which means stuff comes in, stuff goes out, and Charles can show
you what that was. Beyond that it can rewrite headers and even let you modify the content of the request or
response if you want to.

⁶http://www.charlesproxy.com/

http://www.charlesproxy.com/
http://www.charlesproxy.com/

Debugging 73

To set the basics of this up, you first need to know the internal network of your machine.

Network Settings on Mac OSX, showing local IP

On your mobile device you will need to enable a HTTP Proxy. Enter your computers “local IP” in the “Proxy
Server Address” field, and select port 8888 - the default Charles port.

Debugging 74

Sample Charles HTTP Proxy settings on iOS7

This will forward all web traffic on to Charles, which (if it is running) will forward it on to its location.

As pointless as that might sound, the power comes in the options Charles has to offer. If we are intending to
allow web traffic from our mobile device to the API on our development environment then at this point we
are half way.

Local v “Remote”
To allow Laravel (PHP’s) built in server to access this connection on OSX, you must start the server
using the network address shown in the sharing section of system preferences. Choose Apple menu
> System Preferences, and then click Sharing Below “Computer Name” you will see an address
followed by “.local” To start the server simply use: $ php artisan serve –host=”Phils-MacBook-
Air.local” I personally have Charles pointing to a Vagrant box, running on its own IP address with its
own virtual host enabled. This is not something that the book will cover, but is certainly something
you should look into doing.

Tomake dev-api.example.commean something on your mobile device, enter a “Map Remote” rule in Charles.

Debugging 75

Screenshot of Charles on OSX mapping dev-api.example.com

As explained above Charles acts as a “man-in-the-middle”, re-routing traffic based on your rules. By saying
dev-api.example.com should be routed to dev-api.example.com on your machine, you have given that
hostname meaning on your mobile devices (or anything else talking to Charles on that port).

Now - so long as you are able to get a build of your mobile application pointing to dev-api.example.com

- you will be able to click around the application, seeing requests and responses, with all of the according
headers and values as you go.

Debugging 76

Charles showing results for Kapture

You might not find yourself using Charles every day, or for a long time at the start as your HTTP Clients may
be enough to debug problems, but having it available is certainly going to help you out at some point. Keep
it in mind.

Wireshark⁷ is also handy for Linux/OSX users, and Fiddler⁸ is fun for Windows users.

⁷https://www.wireshark.org/
⁸http://www.telerik.com/fiddler

https://www.wireshark.org/
http://www.telerik.com/fiddler
https://www.wireshark.org/
http://www.telerik.com/fiddler

9 Authentication

9.1 Introduction

Understanding authentication for an API can be one of the largest hurdles for many developers, partially
because there are a lot of different methods, but mostly because none of them are anything like authentication
in an average “web app”.

When building an admin dashboard, CMS, blog, etc it is widely accepted as standard behavior to use sessions
with a data store such as cookies, Memcache, Redis, Mongo, or some SQL platform. Regardless of the data
store, sessions are used so that - once logged in - the browser remembers who the user is. To login the user is
presented with a form in HTML showing two fields: one for the username and/or email address of the user
and password. Once the end-user closes the browser or is inactive for a certain period of time, they will be
forgotten.

This is the standard way to handle logins for the vast majority of sites built with a server-side language, but
it is not at all how you handle authentication for an API.

In this chapter we will look at some of the most popular authentication methods, and explain some pros and
cons of each.

9.2 When is Authentication Useful?

Authentication allows APIs to track users, give endpoints user-context (“find all of my posts”), limit users
access to various endpoints, filter data or even throttle and deactivate accounts. This is all very useful for
many APIs, but some may never need to implement authentication.

Read-only APIs

If your API is entirely read-only and the data is not sensitive, then you can just make it available and not
worry at all about authentication. This is perfectly acceptable.

There is the concern that people could be attacking your API with DDoS attacks (flooding your API with an
unreasonable number of requests with malicious intent) and using some form of authentication would limit
the vectors of attack. To get a response from the API they would need to be a valid user, and therefore the
users account could be throttled or deactivated if malicious activity was detected.

This does not entirely negate DDoS attacks but it can help your API do less work, as the request will terminate
much sooner if an invalid user is found. So if DDoS issues are still a concern with or without authentication,
then using a self-improving firewall, or implementing other security barriers may well be the solution.
Generally speaking having anyone spamming any of your servers is not ideal, so this may certainly be a
stronger move than implementing authentication purely to avoid these attacks.

Either way you could quite easily release your API without authentication then implement piece-meal later
on.

Authentication 78

Internal APIs

If your API runs over a private network or is locked down with firewall rules and you do not require user-
context for your API then you could probably skip authentication.

One concern with just leaving all the security up to the network is that if the network is breached then hackers
would be able to do rather a lot of damage, but if hackers are “all up in your networks” then you probably
have a lot of security issues already.

Keep it in mind.

9.3 Different Approaches to Authentication

Approach #1: Basic Authentication

The first approach that many developers go to is HTTP Basic, which is the most like the standard
username/password approach they’ve grown to know and love, but instead implemented on theHTTPRequest
level and respected by the browser.

Here is what Wikipedia has to say:

HTTP Basic authentication (BA) implementation is the simplest technique for enforcing access
controls to web resources because it doesn’t require cookies, session identifier and login pages.
Rather, HTTP Basic authentication uses static, standard HTTP headers which means that no
handshakes have to be done in anticipation.
– Source:Wikipedia¹

Pros

• Easy to implement
• Easy to understand
• Works in the browser and any other HTTP client

Cons

• Is ludicrously insecure over HTTP
• Is fairly insecure over HTTPS
• Passwords can be stored by the browser, meaning a honey-pot of user data is sitting around waiting to
be gobbled up.

Browsers Storing Passwords

With Chrome not even protecting these plain-text passwords with a master password you really are leaving
your users wide-open to attack if you let HTTP Basic be an option.

Elliott Kember publicly outed Chrome on this². The Guardian cared³. Sir Tim Berners-Lee cared⁴. Google

¹http://en.wikipedia.org/wiki/Basic_access_authentication
²http://blog.elliottkember.com/chromes-insane-password-security-strategy
³http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-flaw?INTCMP=SRCH
⁴https://twitter.com/timberners_lee/status/364839351651274752

http://en.wikipedia.org/wiki/Basic_access_authentication
http://blog.elliottkember.com/chromes-insane-password-security-strategy
http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-flaw?INTCMP=SRCH
https://twitter.com/timberners_lee/status/364839351651274752
https://news.ycombinator.com/item?id=6166886
https://news.ycombinator.com/item?id=6166886
http://blog.elliottkember.com/chromes-insane-password-security-strategy
http://www.theguardian.com/technology/2013/aug/07/google-chrome-password-security-flaw?INTCMP=SRCH
https://twitter.com/timberners_lee/status/364839351651274752

Authentication 79

didn’t⁵.

More Plain-Text Woe

Another security issue with Basic authentication is that it is ludicrously insecure when running over HTTP.

In the example provided by Wikipedia a header will be placed in the HTTP Request that looks like this:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

If a request is made that goes over the wire (such as a JS-based API request from a user sat in a coffee shop)
then that request could easily be intercepted. Taking that header as an example, it is insanely simple to find
the username and password.

1 $ php -a

2 php > echo base64_decode('QWxhZGRpbjpvcGVuIHNlc2FtZQ==');

3 Aladdin:open sesame

This is no more or less secure than a HTML login form, but is certainly not secure enough for any API with
sensitive data.

Using SSL improves the concerns greatly, but as the password is sent in every single HTTP Request there is
still the potential for cracking it - but at this point somebody has to really want to get in.

HTTP Basic Auth may be a good fit for a relatively unimportant internal API, which needs some basic
protection and needs to be implemented quickly, but certainly is not any good for anything that handles
money, air traffic or nuclear weapons.

Approach #2: Digest Authentication

Digest is a similar approach to authentication as Basic, but is designed to improve on the security concerns.

Instead of transmitting passwords in plain-text, it will calculate a MD5 hash and send that. Unlike the Base64-
based passwords used in the basic auth, MD5 is a one-way hash - meaning you cannot simply take the hash
and calculate the original password without trying out a lot of different combinations.

HA1 = MD5(A1) = MD5(username:realm:password) HA2 = MD5(A2) = MD5(method:digestURI)
response = MD5(HA1:nonce:HA2)

The nonce is a unique number, which can contain (but should not be only) a timestamp. This helps to avoid
replay attacks as the same hash will not be usable later on.

Pros

• Password is not transmitted in plain text
• The use of nonce helps negate rainbow table attacks

⁵https://news.ycombinator.com/item?id=6166886

https://news.ycombinator.com/item?id=6166886

Authentication 80

• Generally speaking is more secure than basic auth
• Easier to implement than some approaches

Cons

• Harder than basic auth to implement well
• Easy to implement badly
• Still insecure over HTTP
• Just like basic auth, passwords can still be stored by the browser
• Uses MD5

MD5… 4… 3… 2… 1… HACKED

MD5 is well accepted bymany people today to be extremely crackable inmost scenarios. Digest authentication
has not improved over time since its creation in 1993, and while the calculation process should help negate
many of these issues, a lousy implementation of digest authentication will be open to some weird attack
vectors that you don’t know about until after the fact.

Digest is more secure than basic certainly. It is great over SSL, definitely a good choice for an internal API if
you havemore time to spend implementing, but still requires the username and password to be sent repeatedly,
meaning it is potentially hackable, if the hacker has enough encrypted requests available to process.

Approach #3: OAuth 1.0a

Not quite as popular these days, but OAuth 1.0a was a big player on the web-based authentication scene, used
by services such as Dropbox, Flickr, Twitter, Google, LinkedIn and Tumblr. Since then most have moved over
to OAuth 2 which we will discuss next. The two are very different beasts and should not be conflated.

OAuth provides a method for clients to access server resources on behalf of a resource owner
(such as a different client or an end- user). It also provides a process for end-users to authorize
third- party access to their server resources without sharing their credentials (typically, a
username and password pair), using user- agent redirections.
– Source:Wikipedia⁶

Previously we have looked at authentication technologies that were essentially “built into the browser” and
were not particularly flexible in their usages. OAuth 1.0 was a great way for services such as social networks
to implement web-based HTML login forms that looked the same as any other login form (were branded with
logos, color schemes, etc), but could then send you back to the third-party website for all sorts of awesome
integration purposes.

For example, when Twitter swapped from HTTP Basic integration to OAuth 1.0 it meant that instead of third-
parties (iPhone apps, other websites, CMSs, whatever) asking end-users to enter their username and password
(which would be saved somewhere in plain-text), the third-party could redirect the user to the Twitter website,

⁶http://en.wikipedia.org/wiki/OAuth

http://en.wikipedia.org/wiki/OAuth
http://en.wikipedia.org/wiki/OAuth

Authentication 81

get them to log in, have them come back to their service and save a special token, instead of saving a password.
OAuth 1.0a called these tokens a “OAuth Token” and a “OAuth Token Secret”.

OAuth 1.0a was built to be very secure even when not running over SSL. That meant of course that it was
incredibly complicated, having to set up signatures (of which there were a few different algorithms, including
HMAC-SHA1 and RSA-SHA1 or just plaintext). That got a bit tricky when trying to write client code, as you
had to make sure you supported the right signature and most of the PHP implementations out there (including
my own old CodeIgniter Spark⁷) didn’t support all of them.

An average OAuth 1.0a signed HTTP request would look a little something like this:

1 POST /moments/1/gift HTTP/1.1

2 Host: api.example.com

3 Authorization: OAuth realm="http://sp.example.com/",

4 oauth_consumer_key="0685bd9184jfhq22",

5 oauth_token="ad180jjd733klru7",

6 oauth_signature_method="HMAC-SHA1",

7 oauth_signature="wOJIO9A2W5mFwDgiDvZbTSMK%2FPY%3D",

8 oauth_timestamp="137131200",

9 oauth_nonce="4572616e48616d6d65724c61686176",

10 oauth_version="1.0"

11 Content-Type: application/json

12

13 { "user_id" : 2 }

Ow.

Another complication was that there were different implementations. Two-legged (proper, and not proper)
and three-legged. This is incredibly confusing, so I will let Mashape explain in the OAuth Bible: OAuth Flows⁸.

There was also xAuth, which is still OAuth 1.a, which is designed for mobile and desktop applications that do
not have easy access to a browser. It’s much easier for a web-application to spawn a popup with JavaScript
or redirect a user than it is for a mobile app, so this was a handy way to get OAuth Token than the other
implementations.

In the end, however you got the OAuth Token and Secret, you would place the OAuth Token in the request as
a header, and use the secret to sign the signature, which would encrypt the request - making the whole thing
nice and secure. If you can shove SSL on top of that then you’ve got yourself a very secure setup… except
for the fact that tokens would stay the same once created, so over time their security could be compromised.
Somebody could recover the data off of a laptop you sold to them on eBay, or a potential hacker could packet
sniff enough traffic signed with your signature to eventually programmatically guess the token and secret.

Pros

• Super secure, even without SSL
• Does not send username/password in every request - plaintext or hashed

⁷http://getsparks.org/
⁸https://github.com/Mashape/mashape-oauth/blob/master/FLOWS.md#oauth-10a-one-legged

http://getsparks.org/
https://github.com/Mashape/mashape-oauth/blob/master/FLOWS.md#oauth-10a-one-legged
http://getsparks.org/
https://github.com/Mashape/mashape-oauth/blob/master/FLOWS.md#oauth-10a-one-legged

Authentication 82

• Stops third-party applications wanted or storing your username and password
• An attacker gaining an OAuth Token and even a Secret should still never be able to change your
password, meaning you should be safe from account hijack

Cons

• Rather complicated to interact with, even if you have a well built client library. PHP never really had
one, but The League of Extraordinary Packages⁹ has recently built a decent one¹⁰

• Limited number of ways to grant access. xAuth and Two/Three-legged flows ended up being rather
restrictive

• Tokens never changed, so security was essentially just a matter of how long and how much you used
the service

OAuth 1.0a would be a great technology to implement if you were building a website with a public user-based
API… and you were building it in 2009-2010. Now, probably not.

Approach #4: OAuth 2.0

OAuth 2 dropped the “secret token” so users are simply getting an “Access Token” now, and dropped signature
encryption. This was seen by many as a massive step backwards in security, but it was actually rather a wise
move. The OAuth 1.0a spec made SSL optional, but OAuth 2.0 requires it. Relying on SSL to handle the
encryption of the request is just logical, and drastically improves the implementation.

Even a basic GET request in OAuth 1.0a was horrendous, as you’d always need to set up your consumers,
signatures, etc, but with OAuth 2.0 you can simply do this:

1 file_get_contents('https://graph.facebook.com/me?access_token=DFGJKHDFGHDIFHGFKDJGHIU');

Or, as we saw back in Chapter 3, you can usually pass Access Tokens to the server as a HTTP request header:

1 POST /moments/1/gift HTTP/1.1

2 Host: api.example.com

3 Authorization: Bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

4 Content-Type: application/json

5

6 { "user_id" : 2 }

That looks a little easier to work with than OAuth 1.0a, right?

⁹http://thephpleague.com/
¹⁰https://github.com/thephpleague/oauth1-client

http://thephpleague.com/
https://github.com/thephpleague/oauth1-client
http://thephpleague.com/
https://github.com/thephpleague/oauth1-client

Authentication 83

Headers v URL
You should always try to use the Authorization header to send your tokens whenever possible.
The query-string is secured when using SSL, but unless they are intentionally blocked then access
tokens could start turning up in server logs and various other places. Also, browsers will store the
full URL (including query-string) in history. This could easily compromise the integrity of users
security if their computer is stolen or if a sibling decides to play a prank.

“Short”-life Tokens

As discussed OAuth 1.0a also used the same tokens essentially forever. OAuth 2.0’s access tokens will (can)
expire after an arbitrary period of time, defined by the OAuth server. When you request an access token you
will usually be provided with a “Refresh Token” and an expiry offset, which is the number of seconds until
the token expires. Some servers send you a unix time at which it expires. Folks like to do things different for
some reason, but if you know what to look out for it is not so bad.

Using the expire time you know when your access token will not be valid, so you can proactively create a
cron job that refreshes the access tokens, or you can wrap your HTTP requests in an exception handler that
looks for a “Not Authorized” error and refresh them then as the OAuth 2.0 spec recommends.

This extra “access tokens expire and you have to refresh them” step initially seems confusing and annoying,
especially when you are used to “once I have this token it works forever” but its much more secure. OAuth
1.0a stopped you handing out your username and password by essentially giving you another username and
password (the token and the secret) which worked for one specific client. Any good network admin will tell
you that you should regularly change your password (at least every month), and OAuth is no different, as the
more you use the same password/token the greater your chance of somebody finding out what it is.

Grant Types

One further massive benefit OAuth 2.0 provides over OAuth 1.0a is the ability to have multiple (even
custom) grant types. Grant types are essentially a “mode” in which the OAuth 2.0 server will run, expecting
different inputs and maybe providing different outputs. With this flexibility you can create some amazing
implementations.

The most common OAuth 2.0 Grant Type that a user will be familiar with is authorization_code, which is
a very OAuth 1.0a-like flow.

A client web-app creates a link to the OAuth Server of the service they would like to log into (e.g: Facebook)
and the user logs in. Facebook redirects the user back to the client web-app’s “Callback URL”, with a ?code=FOO
variable in the query string. The web-app then takes that code and makes a second request (usually a POST,
but sometimes a GET depending on which popular API you look at…) to Facebook and Facebook then offers
up an access token in the response. Some other popular APIs - like Google Apps - then provide expires and
a refresh token too.

This is just one approach, and there are more. Due to this flexibility OAuth 2.0 is good for pretty much any
scenario when authenticating an API, be it a basic username password login on a single-page JavaScript app,
a CRON job that has no database access or a full-blown user-redirect flow between different websites, the
flexibility of custom grant-types allows absolutely anything to be done.

More on this in the “Understanding OAuth 2.0 Grant Types” section below.

Erin Hammer

Authentication 84

Often I am asked why anyone would still use OAuth 2.0 after Erin Hammer (lead author and editor of the
OAuth 2.0 standard) withdrew his name from the specification¹¹. It certainly sent a ripple through the Internet
but I personally disagree wholeheartedly with the issues he raises.

1. OAuth 2.0 is less secure if you do not use SSL/TSL. Correct. So use them.
2. People have implemented OAuth 2.0 badly (looking at you Facebook/Google/most providers), but when

implemented well it is lovely. Use a pre-built standard compliant implementation, like this one for
PHP¹².

3. He thinks Refresh Tokens are annoying, but I think they are great.

Generally speaking his departure from the project is no major loss. I’m sure the IETF are bike-shedding hard,
but after using both for years I am much happier with OAuth 2.0 and really wish Twitter would get on with
a full upgrade¹³ so I never have to use OAuth 1.0a again.

Generally speaking OAuth 2.0 is a good fit for most situations, providing that you use SSL and implement a
well tested existing solution for your OAuth 2.0 Server. Trying to do this yourself can be incredibly hard and
may well lead to you getting super-hacked. Even Facebook have trouble with this to this day because they
rolled their own solution based on a really early draft of the specification.

Other Approaches

• OpenID - https://openid.net/
• Hawk - https://github.com/hueniverse/hawk
• Oz - https://github.com/hueniverse/oz

9.4 Implementing an OAuth 2.0 Server

Implementation by hand of a OAuth 2.0 server (or any of these authentication methods for that matter) can
be very difficult. This chapter aimed to explain the pros, cons and use-cases for each, and implementation is
sadly out of its scope. Here are a few existing implementations that you could look into using.

PHP Implementations

One implementation stands out above the rest in PHP-land, and not just because it is written by a friend of
mine: Alex Bilbie¹⁴. We originally became friends because not only is he an all-round good guy, but he has
studied both OAuth specs religiously, and built some great tools for them over the years which I have used
many times.

In his last job he worked at University of Lincoln, using OAuth for all sorts of cool things. He then
received funding for a research project to build awesome open-source code for improving authentication and

¹¹http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
¹²https://github.com/thephpleague/oauth2-server/
¹³https://dev.twitter.com/discussions/397
¹⁴http://alexbilbie.com/

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://github.com/thephpleague/oauth2-server/
https://github.com/thephpleague/oauth2-server/
https://dev.twitter.com/discussions/397
https://dev.twitter.com/discussions/397
http://alexbilbie.com/
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://github.com/thephpleague/oauth2-server/
https://dev.twitter.com/discussions/397
http://alexbilbie.com/

Authentication 85

interoperability. That project resulted in a few great packages, including the PHP OAuth 2.0 Server¹⁵, which
now has a home with The League of Extraordinary Packages¹⁶. It is the only PHP package to implement the
entire OAuth 2.0 spec, so is very worth trying out.

..

OAuthello
Alex is writing a book covering the implementation of this server in great detail amongst all other OAuth
things, so you should definitely pick up a copy. That URL contains a coupon code apisyouwonthate, which
should knock a significant chunk off the price.

http://leanpub.com/oauthello-a-book-about-oauth/c/apisyouwonthate

There is another PHP OAuth 2.0 server implementation¹⁷ which also probably works.

Python Implementations

There are two implementations for Python which look pretty good. One is oauth2lib¹⁸ which is a fork of
pyoauth2¹⁹. The original authors gave up, then the new ones had to rename it, or something.

Another is python-oauth2²⁰ which was developed by SimpleGeo, which was a great geo-location/place SaaS,
but has since been bought out and shut down andwas last committed to two years ago… so…maybe somebody
needs to take that one over too.

Ruby Implementations

The only active and documented RubyOAuth 2.0 Server I foundwas a Rackmodule namedRack::OAuth2::Server²¹.
It is well documented with examples of implementations in Rails, Sinatra and Padrino.

9.5 Where the OAuth 2.0 Server Lives

Many assume that the OAuth 2.0 server should be part of their API server.While it certainly could, it definitely
does not need to.

An OAuth server usually has a web interface, which has HTML forms, form validation, and all sorts of static
resources like images, CSS, JavaScript, etc. That makes it more fitting with a general website, so if your API
and web-site are different servers then the OAuth server would be more suitably placed on the website.

Generally speaking it is better to keep all of these things autonomous, as if you decide to build a new version
of your website in AngularJS instead of server-side code then it would be a pain to have to switch your OAuth

¹⁵https://github.com/thephpleague/oauth2-server
¹⁶http://thephpleague.com/
¹⁷http://bshaffer.github.io/oauth2-server-php-docs/
¹⁸https://github.com/NateFerrero/oauth2lib
¹⁹https://github.com/StartTheShift/pyoauth2
²⁰https://github.com/simplegeo/python-oauth2
²¹https://github.com/assaf/rack-oauth2-server

https://github.com/thephpleague/oauth2-server
http://thephpleague.com/
http://leanpub.com/oauthello-a-book-about-oauth/c/apisyouwonthate
http://leanpub.com/oauthello-a-book-about-oauth/c/apisyouwonthate
http://bshaffer.github.io/oauth2-server-php-docs/
https://github.com/NateFerrero/oauth2lib
https://github.com/StartTheShift/pyoauth2
https://github.com/simplegeo/python-oauth2
https://github.com/assaf/rack-oauth2-server
https://github.com/thephpleague/oauth2-server
http://thephpleague.com/
http://bshaffer.github.io/oauth2-server-php-docs/
https://github.com/NateFerrero/oauth2lib
https://github.com/StartTheShift/pyoauth2
https://github.com/simplegeo/python-oauth2
https://github.com/assaf/rack-oauth2-server

Authentication 86

server implementation too. If the OAuth server is on its own server, or at very least its own code-base, then
you do not have this concern.

The only thing your API needs to do is look for an Access Token (as a header or query string parameter) then
hit whichever datastore (SQL database, Mongo, etc) that contains the access tokens. Check it is valid (in the
DB and not expired) then grab whichever user is tied to it, and pull that record for use throughout the API
code.

None of that is complicated, so trying to tie the API server and OAuth server together in the same application
code-base out of some misplaced perception of belonging is just not required.

9.6 Understanding OAuth 2.0 Grant Types

The four grant types discussed in the specification are:

Authorization Code

Authorization Code is the full user-flow with redirects discussed earlier in the chapter.

This is most useful if you have multiple sites (like a network of sites for games, movies, books, etc) or just
want to share logins with other partners. This is also the grant type you will most likely use to log users into
Facebook or Google.

Section 4.1 in the spec²²

Refresh Token

Refresh Tokens are supported by most popular OAuth 2.0 providers. Basically, you notice that your old access
token does not work anymore when you receive a HTTP 401 status code, so you request a new one using
your refresh token. The OAuth 2.0 server will then either give you a new access token, or the server will
refuse. At that point you will have to send your user an email saying “Your account is no longer connected
to Example.com, please click here to reconnect.” This is not common, and usually means that the user has
disconnected access for that account anyway so a manual request is literally the only option.

This sounds like a bit of a run around, but it is quite simple and has a few advantages.

Basically, using the same Access Token over and over again forever then there is a fairly strong chance of
somebody finding it. There are an array of reasons for this, from the the site not implementing SSL, the site
getting hacked, the sys admins accidentally exposing some of their access logs, or - more likely - the Access
Token is stored in the browser.

Storing the access token in the browser is fine if the access token is going to expire soon, as it means the
hacker has a very short window of opportunity to do anything if they find it. If they get the current access
token then fine, but if there is a 5 minute expiry then getting that token would be much more difficult, and
probably require the hacker to be physically on the device you were using, or SSHing in - at which point you
have much greater concerns.

²²http://tools.ietf.org/html/rfc6749#section-4.1

http://tools.ietf.org/html/rfc6749#section-4.1
http://tools.ietf.org/html/rfc6749#section-4.1

Authentication 87

Not all APIs will expire their access tokens, so some do live forever. Normally they either last forever, or
they will give you an expiry time and expect you to refresh them. One exception to that is Facebook, who do
neither. Facebook’s whole approach is that they want you to be forced to send a user back to facebook.com

on a login.

It is frustrating that once again Facebook have decided to flagrantly disregard the OAuth 2.0 spec to suit their
own needs, hurting the user flow and confusing developers in the process. Working with these popular APIs
you will notice a lot of things like this which wind you up, but the differences are much less problematic then
if they were not even slightly OAuth 2.0 based. At least they have some common ground.

Section 6 in the spec²³

Client Credentials

Client credentials can be useful for saying:

I am an application, you know that I am an application because here are my client_id and client_-
secret values. Let me in now please.

This is useful for CRON jobs, worker processes, daemons or any other sort of background process. The
application will not have any context of a “user”, but it will be able to interact with your API. They have
an access token which they will keep on using, and if it happens to expire then the background process will
know how to refresh it.

Twitter - as mentioned - have been OAuth 1.0a only for years, but they added an OAuth 2.0 endpoint which
would accept client_credentials as the only grant type. Their documentation²⁴ explains further.

This is handy for public crawling of tags or public tweets, but is not able to handle posting statuses or anything
that relates to a user. This is a handy compromise for now, and hopefully is a sign that they intend to roll out
support for more grant types in the future.

Section 2.3.1 in the spec²⁵

Password (user credentials)

User Credentials are possibly the easiest way to get an access token for a user. It skips the whole redirect-
flow that “Authentication Code” provides, and the “user peace-of-mind” that comes with it, but does offer
simplicity. If Twitter had offered User Credentials OAuth 2.0 login as a replacement for HTTP Basic then the
“Twitter Authpocolypse” a few years ago would have been far less drastic.

All you need to do is provide a username and password to the OAuth 2.0 server, and it gives you back an
access token (and of course maybe a refresh token). Simple.

An example of this being extremely useful would be creating a single-page application with AngularJS/Em-
berJS/WhateverJS and wanting to provide a login. Clearly redirecting users around would be unnecessary
because they are already on “your site”, and the login box can be styled however you like already.

²³http://tools.ietf.org/html/rfc6749#section-6
²⁴https://dev.twitter.com/docs/auth/application-only-auth
²⁵http://tools.ietf.org/html/rfc6749#section-2.3.1

http://tools.ietf.org/html/rfc6749#section-6
https://dev.twitter.com/docs/auth/application-only-auth
http://tools.ietf.org/html/rfc6749#section-2.3.1
http://tools.ietf.org/html/rfc6749#section-6
https://dev.twitter.com/docs/auth/application-only-auth
http://tools.ietf.org/html/rfc6749#section-2.3.1

Authentication 88

The trouble is, if you try and do all of this in JavaScript code you run into a problem. You need to send the
client_id and client_secret along with the username and password, but if you are using JavaScript then
putting your client_secret into the JavaScript means it is readable in the browser…

HACKHACKHACK!

Do not do that.

It is easily avoidable, simply make a proxy script which will take a username and password as POST items,
then pass them onto the OAuth 2.0 server with the client_id and client_secret too, which both probably
come from some secret config file on the server.

Basic access token proxy script written in Python using Flask

1 import requests

2

3 from flask import Flask

4

5 app = Flask(__name__)

6

7 @app.route('/proxy/access_token', methods=['POST'])

8 def access_token():

9

10 payload = {

11 'grant_type': 'password',

12 'client_id': 'foo',

13 'client_secret': 'bar',

14 'username': request.form['username'],

15 'password': request.form['password']

16 }

17

18 r = requests.post('https://oauth.example.com/', data=payload)

19

20 return r.json(), r.status_code

That is all that needs to be done. Take whatever it gives you, pass it onto the server, and pass the response
back. This keeps the secret information secret and still lets you do everything else in the browser.

Section 4.3 in the spec²⁶

Custom Grant Types

At Kapture we created a social grant, where a user would provide a string matching “facebook” or “twitter”
and an access_token (with maybe a access_token_secret for OAuth 1.0a providers like Twitter) and that
would do the following:

²⁶http://tools.ietf.org/html/rfc6749#section-4.3

http://tools.ietf.org/html/rfc6749#section-4.3
http://tools.ietf.org/html/rfc6749#section-4.3

Authentication 89

1. Grab the users data
2. Find out if they are a Kapture user, and if not create a Kapture user record
3. Create an access token, refresh token, etc to give that user access

That gave us a completely seamless instant “sign-up or login” experience for our iPhone application, and
let our admin panel AND merchant dashboard use the exact same OAuth 2.0 server to handle logins for
everyone. Very handy, for our iPhone app, and would mean we could roll the same functionality out to a
potential Android app and web-based versions too.

If you can think of it, you can make a custom grant type for it. Grant access to any users that provide you
with a URL of an image, which contains a photograph of a car which happens to be yellow. Whatever.

10 Pagination

10.1 Introduction

Pagination is one of those words that means something very specific to many developers, but it generally
means:

the sequence of numbers assigned to pages in a book or periodical.

There are a few ways to achieve pagination, but when talking in terms of an API it means:

any way you want to go about splitting up your data into multiple HTTP requests, for the sake
of limiting HTTP Response size

There are a few reasons for doing this:

1. Downloading more stuff takes longer
2. Your database might not be happy about trying to return 100,000 records in one go
3. Presentation logic iterating over 100,000 records is also no fun

As you can probably tell, 100,000 is a arbitrary number. An API could have endpoints like /placeswith over 1
million records, or checkins which could be unlimited. While developing an API so many people forget about
this, and while 10 or 100 records will display quite quickly, infinity is considerably slower. Data grows.

A good API will allow the client to request the number of items it would like returned per HTTP request.
Some developers try to be smart and use custom HTTP headers for this, but this is literally what the query
string is for.

/places?number=12

Some use number, limit, per_page or whatever. I always think limit only really makes sense because SQL
users are used to it and REST is not SQL, so I personally use number.

Define a Maximum
When you take the limit/number parameter from the client, you absolutely have to set an upper
bound on that number, make sure it is over 0 and depending on the data source you might want to
make sure it is an integer as decimal places could have some interesting effects.

Pagination 91

10.2 Paginators

I stole the word “Paginator” from Laravel, which uses a Paginator class for a very specific type of pagination.
It is not the most efficient form of pagination by any means, but it is rather easy to understand and works
fine on relatively small data sets.

How do Paginators Work

One approach to pagination is to count how many records there are for a specific item. So, if we count how
many places there are, there will probably be some sort of SQL query like this:

1 SELECT count(*) as `total` FROM `places`

When the answer to that query comes back as 1000, the following code will be executed:

1 <?php

2 $total = count_all_the_places();

3 $page = isset($_GET['page']) ? (int) $_GET['page'] : 1;

4 $per_page = isset($_GET['number']) ? (int) $_GET['number'] : 20;

5 $page_count = ceil($total / $per_page);

With that basic math taken care of we now know how many pages there are in total, and have rounded it up
with ceil(). That is a PHP function equivalent of Math.round(), which rounds it up to the nearest integer. If
$total is 1000, then $page_count will be 83.333. Obviously nobody wants to go to page 83.333 so round that
up to page 84.

Using these variables, an API can output some simple meta-data that goes next to the main data namespace:

1 {

2 "data": [

3 ...

4],

5 "pagination" : {

6 "total": 1000,

7 "count": 12,

8 "per_page": 12,

9 "current_page": 1,

10 "total_pages": 84,

11 "next_url": "https://api.example.com/places?page=2&number=12",

12 }

13 }

The names of items in this pagination example are purely based off what Kapture’s iPhone developer suggested
at the time, but should portray the intent.

You basically give the client enough information to do math itself if that is something it wants to do, or you
let them ingest basic HTTP links too.

Pagination 92

Counting lots of Data is Hard

The main trouble with this method is the SELECT count(*) that is required to find out the total, which can
be a very expensive request.

The first thing to mind will be caching. Sure you can cache the count, or even pre-populate the request. In
many cases you certainly could, but you have to consider that most endpoints will have multiple query string
parameters to customise the data returned.

/places?merchant=X

That means you will now have a single cache for ever count of places by each specific merchant. That too
could be cached or pre-populated, but when it comes to geo data you have no chance:

/places?lat=42.2345&lon=1.234

Unfortuntately the chances of having multiple people request the exact same set of coordinates regularly
enough tomake a cache worthwhile is unlikely, especially as those coordinates point to a remote, mountainous
region of Spain.

Pre-population for those results also seems highly unlikely. If you have literally millions of places then trying
to count all places for somebody in Spain is just silly. Indexes can help. Slicing your data into geographic
buckets and slicing it together with some clever trickery can help. Generally speaking though, using this sort
of pagination introduces big-data problems to what can be potentially small-data setups, especially when you
have filtering options.

This is not bad (and I have used it myself for plenty of APIs) but you definitely need to keep this sort of thing
in mind.

Moving Goal Posts

Another tricky issue with the “count everything then pick which page number” approach is that if a new item
is added between HTTP requests, the same content can show up twice.

Imagine the scenario, where the number per page is set to 2, places are ordered by name, and the values are
hip bars in Brooklyn, NY:

• Page 1
– Barcade
– Pickle Shack

• Page 2
– Videology

If the client requests Page 1, then they will see the first two results. While the results for Page 1 are being
displayed to the end user, some hip new bar opens up with the name “Lucky Dog” and joins the platform.

Now the data set looks like this:

Pagination 93

• Page 1
– Barcade
– Lucky Dog

• Page 2
– Pickle Shack
– Videology

If the client does not refresh Page 1 (which most would not do for the sake of speed) then “Pickle Shack” is
going to show up twice, and “Lucky Dog” will not be on the list at all.

Using Paginators with Fractal

This is a rather specific example, requiring Laravel’s Eloquent and Pagination packages, and Fractal¹. If you
are not using any of those things then you can skip it and just use some simple math like the example JSON
above. Otherwise, follow on:

1 <?php

2 use Acme\Model\Place;

3 use Acme\Transformer\PlaceTransformer;

4 use League\Fractal\Resource\Collection;

5 use League\Fractal\Pagination\IlluminatePaginatorAdapter;

6

7 $paginator = Place::findNearbyPlaces($lat, $lon)->paginate();

8 $places = $paginator->getCollection();

9

10 $resource = new Collection($places, new PlaceTransformer);

11 $resource->setPaginator(new IlluminatePaginatorAdapter($paginator));

10.3 Offsets and Cursors

Another common pagination method is to use “cursors” (sometimes called “markers”). A cursor is usually a
unique identifier, or an offset, so that the API can just request “more” data.

If there is more data to be found, the API will return that data. If there is not more data, then either an error
(404) or an empty collection will be returned.

..

Empty is not Missing
I personally advise against a 404 because the URL is not technically wrong, there is simply no data to be
returned in the collection so an empty collection makes more sense.

To try the same example:

¹http://fractal.thephpleague.com/

http://fractal.thephpleague.com/
http://fractal.thephpleague.com/

Pagination 94

1 {

2 "data": [

3 ...

4],

5 "pagination" : {

6 "cursors": {

7 "after": 12,

8 "next_url": "https://api.example.com/places?cursor=12&number=12"

9 }

10 }

11 }

This JSON has been returned after requesting the first 12 records; 1-12 were all available, and (for the sake
of example) were all auto-increment integers, so, in this example, if we would like the content that is after 12,
then the records having ID from 13 to 24 would be on the next page.

While this provides an incredibly simplistic explanation, generally speaking using IDs is a tricky idea. A
specific record can move from one category to another, or could be deactivated, or all sorts of things. You can
use IDs, but it is generally considered best practise to use an offset instead.

Using an offset is simple. Regardless of your IDs, hashed, etc, you simply put 12 in there and say “I would like
12 records, with an offset of 12”, instead of saying “I would like records after id=12”.

Obscuring Cursors

Facebook sometimes use cursors to obscure actual IDs, but sometimes use them for “cursor-based offsets”.
Regardless of what the cursor actually is your user should never really care, so obfuscating it seems like a
good idea.

Facebook Graph API using Cursors

How did Facebook get "MTA=" and "MQA==" as values? Well, they are intentionally odd looking as you are not
meant to know what they are. A cursor is an opaque value which you can pass to the pagination system to
get more information, so it could be 1, 6, 10, 120332435 or “Tuesday” and it wouldn’t matter.

Don Gilbert² let me know that in the example of Facebook they just Base64 encode their cursors:

²http://dongilbert.net/

http://dongilbert.net/
http://dongilbert.net/

Pagination 95

1 php > var_dump(base64_decode('MTA='));

2 string(2) "10"

3

4 php > var_dump(base64_decode('MQ=='));

5 string(1) "1"

Obfuscating the values is not done for security, but - I assume - to avoid people trying to do math on the
values. Ignorance is bliss in this scenario, as somebody doing maths on an offset-based paginated result might
end up doing the same math on a primary key integer. If everything is an opaque cursor or marker then
nobody can do that.

Extra Requests = Sadness

This approach is not favored by some client developers as they do not like the idea of having to make extra
HTTP requests to find out that there is no data, but this just seems like the only realistic way to achieve a
performant pagination system for large data. Even with a “pages” system, if there is only 1 record on the last
page and that record (or any other in any page) is removed then the last page will be empty anyway, so…
every pagination system needs to respond to an empty collection.

Using Cursors with Fractal

Again this is a rather specific example, but should portray the concept.

1 <?php

2 use Acme\Model\Place;

3 use Acme\Transformer\PlaceTransformer;

4 use League\Fractal\Cursor\Cursor;

5 use League\Fractal\Resource\Collection;

6

7 $current = isset($_GET['cursor']) ? (int) base64_decode($_GET['cursor']) : 0;

8 $per_page = isset($_GET['number']) ? (int) $_GET['number'] : 20;

9

10 $places = Place::findNearbyPlaces($lat, $lon)

11 ->limit($per_page)

12 ->skip($current)

13 ->get();

14

15 $next = base64_encode((string) ($current + $per_page));

16

17 $cursor = new Cursor($current, $next, $places->count());

18

19 $resource = new Collection($places, new PlaceTransformer);

20 $resource->setCursor($cursor);

Pagination 96

This will take the current cursor, use it as an offset, then work out the base64 version and convert it. There is
a bit of work to do in this example because the Cursor class is intentionally vague. Instead of using an offset
it could be a specific ID and you use it for an SQL WHERE id > X clause, but better not.

11 Documentation

11.1 Introduction

Regardless of whether you decide to keep an API private or release it to the general public, documentation is
incredibly important.

In the very early stages of development some API developers will rely soley on a Postman collection (discussed
in Chapter 8: Debugging) to be a sufficient source of documentation for their API. This may be the case but
as soon as the API is in use by more people than just the one developer with their one collection this quickly
becomes a nightmare.

Even if the API is in use internally, without a single source of regularly updated documentation for your API
you will be answering questions from anyone using the API about how that works non-stop.

If the API is public then…well without documentation nobodywill use your API at all, which could drastically
effect the successes of your company. Integration with services via an API these days is a very important
factor for many companies, from startups to huge corporations, so do not go through the trouble of building
something amazing only to have it completely ignored due to a lack of documentation.

11.2 Types of Documentation

There should be a few different types of documentation:

API Reference

The “API Reference” is sometimes refered to as “Endpoint Reference” and is essentially a list of all endpoints
and their associated HTTP Methods, descriptions of what they do and a list of all arguments that can be
passed with descriptions about what values work and in what format those values could be. That is a lot of
work. But, it can be made easier with some tools. More on that later.

Sample Code

“Sample Code” is generally just a case of building one or two libraries or code packages in different languages
and documenting their API with tools like phpDocumentor¹ and showing lots of common scenarios, like
“Search venues by name” and “Create a checkin with a photograph” to show the basics of how that code
works. These examples reduce the mental barrier for a developer because they can see concrete examples in
a language familiar to them, instead of being forced to think in terms of HTTP requests.

Despite your own personal preferences, please for the love of every good in the world make your sample
code look as good as you can in each language. Words cannot express how frustrating it is when some Ruby

¹http://phpdoc.org/

http://phpdoc.org/
http://phpdoc.org/

Documentation 98

developer smashes out some awful PHP code - because they are bad with PHP - and passes that off as a
finished product.

Regardless of the language, most sample code should look very similar. This has the benefit of letting users
switch between languages without having to start from scratch learning a new code package. PHP, Ruby and
Python all have some concept of namespaces, they all have blocks or callbacks, they all have objects and
hashes, they all support variadics and one day PHP will support named parameters. One day.

Guides or Tutorials

This is the easiest of the lot. Take a subject like “Authentication” and talk through it like a blog post. Images,
diagrams, code examples of the libraries handling various situations in one or multiple languages using tabs,
etc. Some people show examples using command line curl, but that can get pretty nasty as curl is not exactly
known for being an interface full of sugar.

A great example of a set of tutorials is the SoundCloud API². Their “Using the API” page is a central resource
which links to the API Reference for those whowant to get their hands dirty, but also contains simple scenarios
like “Uploading Audio Files” in multiple languages.

SoundCloud API Documentation - “Using the API”

If you check the examples out here Ruby, Python and PHP all look near identical (although I am not sure
what happened to JavaScript).

²http://developers.soundcloud.com/docs/api/guide

http://developers.soundcloud.com/docs/api/guide
http://developers.soundcloud.com/docs/api/guide

Documentation 99

Writing these guides takes a bit of time but that time will be given back in buckets, saving you answering the
same questions over and over again. The other time saver is for when future you forgets how things work
in 3 months, or you come back from a holiday rather frazzled and need a tutorial to step you through how
things work. The amount of times I Google search a problem and find a blog I have written a few months ago
answering it… It happens.

There are plenty of great tools around for static text-based documentation like this. Generally any Markdown
-> HTML static site generator works well; Sculpin³ (PHP), Jekyll⁴ (Ruby) and Hyde⁵ (Python) all do this as
well as each other.

11.3 Picking a Tool

There are no doubt multiple tools out there for generating your API/Endpoint documentation. Some
recommend a system called Swagger⁶ which is a great looking tool and works with a huge array of languages.
Sadly to me it seems to be somewhat of a black art.

Swagger defines a specification and various language or framework specific implementations come up with
their own solution. For PHP the way you go about this is through a rather confusing (and poorly documented)
set of annotations with strange names. Furthermore it requires you to put these annotations throughout a large
chunk of your application, including data mapper style models, which you might not even have. It wanted
property-level annotations, and neither my models or Fractal transformers have properties, so this was a wild
and whacky way to try and work.

Another tool called API Blueprint⁷ takes care of this nicely. A company called Apiary⁸ released this tool as
open-source, and as their entire company is about API generation it seems like rather a good fit.

11.4 Setting up API Blueprint and Aglio

API Blueprint has a very easy to understand set of Getting Started instructions⁹ which has a series of
approaches to creating your documentation with various languages and tool combinations. They are working
on a Ruby utility and .NET seems to be covered. Sublime Text has [a plugin][st-plugin], but by far the easiest
is the command-line executable called Aglio¹⁰.

There is one caveat: this tool uses NodeJS. That sounds like a blocker to some but it should not be. Only the
command-line utility requires NodeJS, much like some command-line tools require Ruby or Python. Install
NodeJS and move along to the next bit.

Step 1: Install NodeJS

If you are using OSX then Homebrew¹¹ makes this very easy:

³https://sculpin.io
⁴https://github.com/jekyll/jekyll
⁵http://ringce.com/hyde
⁶https://helloreverb.com/developers/swagger
⁷http://apiary.io/blueprint
⁸http://apiary.io
⁹http://apiblueprint.org/#get-started
¹⁰https://github.com/danielgtaylor/aglio
¹¹http://brew.sh

https://sculpin.io
https://github.com/jekyll/jekyll
http://ringce.com/hyde
https://helloreverb.com/developers/swagger
http://apiary.io/blueprint
http://apiary.io
http://apiblueprint.org/#get-started
https://github.com/danielgtaylor/aglio
http://brew.sh
https://sculpin.io
https://github.com/jekyll/jekyll
http://ringce.com/hyde
https://helloreverb.com/developers/swagger
http://apiary.io/blueprint
http://apiary.io
http://apiblueprint.org/#get-started
https://github.com/danielgtaylor/aglio
http://brew.sh

Documentation 100

1 $ brew install node

Otherwise the NodeJS¹² website has instructions for your operating system.

Step 2: Install Aglio

Install this utility as a command-line executable:

1 $ npm install -g aglio

The -g switch installs the utility globally, instead of just into the current folder.

Step 3: Generate Example Docs with Aglio

The sample code for the book includes the Aglio example markdown file, which will help illustrate how easy
it is to generate documentation HTML:

1 $ cd ~/apisyouwonthate/chapter11/aglio-example

2 $ aglio -i example.md -o index.html

Step 4: Generate HTML and Open in Browser

Create some sort of web server (XAMPP, WAMP, MAMP, Pow, shove it on FTP or whatever) and view the
contents. This book has used PHP as an example before, so let us continue that trend:

1 $ php -S localhost:8001

Now browse to that address in your favorite browser and you should see some very attractive sample output.

¹²http://nodejs.org

http://nodejs.org
http://nodejs.org

Documentation 101

Example output of Aglio generated HTML

Looks amazing right?

Step 5: Find a Plugin

Writing Markdown then switching over to the terminal and running a command can be a tricky workflow, so
try and find a plugin for an editor you like which can help. If you use Atom¹³ then there is an Atom plugin¹⁴
you can use, but there are doubtless other options available.

11.5 Learning API Blueprint Syntax

To make the output reflect your API documentation, the Markdown source files will need updated. While
they are generally just Markdown, there is a specific format to this, known as “API Blueprint format 1A”.

Go to the following location and open up example.md:

¹³https://atom.io/
¹⁴https://atom.io/packages/api-blueprint-preview

https://atom.io/
https://atom.io/packages/api-blueprint-preview
https://atom.io/
https://atom.io/packages/api-blueprint-preview

Documentation 102

1 $ cd ~/apisyouwonthate/chapter11/place-example

The rest of this section will walk through this example.md and explain what various parts mean.

Meta Data

This is simple. The API title, URL, introduction, etc is just some Markdown:

Very start of an API Blueprint markdown file, showing meta data

1 FORMAT: 1A

2 HOST: https://api.example.com

3

4 # FakeSquare API

5

6 This is documentation for the theoretical checkin app API that has been built throughout t\

7 he

8 book [Build APIs You Wont Hate](https://leanpub.com/build-apis-you-wont-hate).

9

10 ## Authorization

11

12 This could be anything, but it seems like a good place to explain how access tokens work.

13

14 Most endpoints in the FakeSquare API will require the `Authorization` HTTP header.

15

16 ```http

17 Authorization: bearer vr5HmMkzlxKE70W1y4MibiJUusZwZC25NOVBEx3BD1

18 ```

19

20 Failing to do so will cause the following error:

21

22 ```json

23 {

24 "error" : {

25 "code" : "GEN-MAYBGTFO",

26 "http_code" : 401,

27 "message" : "Unauthorized"

28 }

29 }

30 ```

31

32 Or something. This is mostly just an introduction, so provide links to tutorial

33 sections elsewhere on your site.

A very quick and easy introduction, showing the name of the API (FakeSquare API) and a basic example of
how to authenticate a request with our API.

Documentation 103

Resource Groups

To keep this simple but also cover a lot of different usages, we will take examples from the “Action Plan” in
Chapter 2: Planning and Creating Endpoints for Places, and document them in API Blueprint syntax.

Places - Create - Read - Update - Delete - List (lat, lon, distance or box) - Image

Using the same logic in Chapter 2 as we used to outline the user endpoints, we can assume these endpoints:

Action Endpoint

Create POST /places

Read GET /places/X

Update PUT /places/X

Delete DELETE /places/X

List GET /places

Image PUT /places/X/image

Everything at or below the /places level is considered a “Resource Group” by API Blueprint, so our new
example will only have one group.

1 # Group Places

2 Search and manage places.

That first line has the reserved keyword Group which will be removed from output. The Places is the name
of the group. The line below is an optional description for humans.

In a real API you would have more groups. Users, Checkins, Posts, etc.

Resources

API Blueprint accepts multiple Resource sections per Group section, and considers /places, /places/X
and /places/X/image to be different Resources. You probably consider /places to be more of a collection
of resources, and consider /places/X/image to be a “sub-resource”, but API Blueprint considers them all
“Resources”.

Not a problem. Simply make some h2 tags using the ## prefix:

Documentation 104

Example outline of multiple ‘Resource Sections’.

1 ## Place List [/places{?lat}{&lon}{&distance}{&box}{&number}{&page}]

2

3

4 ## Create new place [/places]

5

6

7 ## Places [/places/{id}]

8 Manage an existing place.

9

10

11 ## Place Images [/places/{id}/image]

12 Places can have an image associated with them, that will act as a cover photo or photograp\

13 h.

Here we have four “Resource Sections”, each for a different resource. The one oddity here is that there are
two entires are for /places. The reasoning here is that each “Resource Group” has its own “URI Template”.
No two groups can have the same template (two with /places would error) and if you want to document
parameters then you need to put them in the template.

It seems odd, but just go with it.

1. One Resource Section for listing (with the filter/query/search parameters listed)
2. One Resource Section for creating a new item on a collection
3. One Resource Section for a single item
4. One Resource Section for each and every “sub-resource” your API may have on an item

Resource Actions

Actions are what you would expect them to be - the actions outlined in the “Action Plan”.

You can spot an “Action” in two ways. Firstly due to the h3 header (###) and secondly by the trailing [GET]

HTTP verb notation.

Example of the ‘Place List’ resource using API Blueprint Markdown

1 ## Place List [/places{?lat}{&lon}{&distance}{&box}{&number}{&page}]

2

3 ### Get places [GET]

4 Locate places close to a certain set of coordinates, or provide a box of coordinates to se\

5 arch within.

6

7 + Parameters

8

9 + lat (optional, number, `40.7641`) ... Latitude to search near, with any accuracy

Documentation 105

10 + lon (optional, number, `-73.9866`) ... Longitude to search near, with any accuracy

11 + distance = `10` (optional, number, `20`) ... The radius size in miles to search for \

12 from lat and lon coordinates

13 + box (optional, string, `40.7641,-73.9866,40.7243,-73.9841`) ... Top left latitude, t\

14 op left longitude, bottom right latitude, bottom right longitude

15 + number (optional, integer, `15`) ... The number of results to return per page

16 + page = `1` (optional, integer, `15`) ... Which page of the result data to return

17

18 + Response 200 (application/json)

19

20 {

21 "data": [

22 {

23 "id": 2,

24 "name": "Videology",

25 "lat": 40.713857,

26 "lon": -73.961936,

27 "created_at": "2013-04-02"

28 },

29 {

30 "id": 1,

31 "name": "Barcade",

32 "lat": 40.712017,

33 "lon": -73.950995,

34 "created_at": "2012-09-23"

35 }

36]

37 }

This is the first “Resource Section”, now filled out. It lists the available parameters for the URL with a very
special syntax:

1 + <parameter name> [= `<default value>`] [([required | optional], [<type>], [`<example va\

2 lue>`])] [... <description>]

3

4 [<additional description>]

5

6 [+ Values

7 + `<enumeration element 1>`

8 + `<enumeration element 2>`

9 ...

10 + `<enumeration element N>`]

Our example has used slighty shorter syntax and skipped the additional description and enum values, but
takes advantage of much of the first line.

Documentation 106

1 + lat (optional, number, `40.7641`) ... Latitude to search near, with any accuracy

This explains that the field is optional, it is a number (these type fields are arbitrary) and shows an example
value of 40.7641.

The ... is literal here and is used as a marker. Everything on the right hand side is a short description for the
field.

1 + page = `1` (optional, integer, `15`) ... Which page of the result data to return

Similar, but this time a default value has been added which in the case of pagination will probably be 1.

The rest of this “Action Section” is responses.

Show an example response for a specific content-type.

1 + Response 200 (application/json)

2

3 { ... }

This says that you can expect a 200 status, which will be Content-Type: application/json and shows an
example of the body content.

Now if we run Aglio again and serve it up through a web-server:

1 $ aglio -i example.md -o index.html

2 $ php -S localhost:8001

Documentation 107

Example output of Aglio generated HTML

Documentation 108

How amazing is that, for such a little amount of Markdown? Doing all of that manually certainly would not
be any fun.

Requests

Documenting the request content and offering examples is of course one of the most importants parts of any
API documentation, and API Blueprint does not disappoint.

API Blueprint will allow you to create multiple Request examples for an Action. Looking at the Place Images

Resource will outline how this is done:

Example of the ‘Place Images’ resource.

1 ## Place Images [/places/{id}/image]

2 Places can have an image associated with them, that will act as a cover photo or photograp\

3 h.

4

5 + Parameters

6

7 + id (required, integer) ... The unique identifier of a place

8

9 ### Set place image [PUT]

10 Assign a new image or replace the existing image for a place.

11

12 + Request (image/gif)

13

14 + Headers

15 Authorization: Bearer {access token}

16 + Body

17 <raw source of gif file>

18

19 + Request (image/jpeg)

20

21 + Headers

22 Authorization: Bearer {access token}

23 + Body

24 <raw source of jpeg file>

25

26 + Request (image/png)

27

28 + Headers

29

30 Authorization: Bearer {access token}

31 + Body

32

33 <raw source of png file>

Documentation 109

Here the <raw source of png file> stuff is just plain-text - because pasting in the contents of an actual
PNG file would not look great - but you can use JSON or anything else.

Having multiple request examples can be very important if you are unfortunate enough to be documenting
an API which supports more than one input format, like JSON and XML for instance.

Responses

Each endpoint in your API will have one or more different responses. There will probably be one or more
20xs, some 40xs, and maybe a few 50xs too.

An “action response section” might look like this:

1 + Response 201

2 + Response 400 (application/json)

3

4 {

5 "error" : {

6 "code": "GEN-FUBARGS",

7 "http_code" : 400,

8 "message": "Content-Type must be image/png, image/jpg or image/gif"

9 }

10 }

11

12 + Response 404 (application/json)

13

14 {

15 "error" : {

16 "code" : "GEN-LIKETHEWIND",

17 "http_code" : 404,

18 "message" : "Resource Not Found"

19 }

20 }

A tricky thing here is that while your API might return a 400 code for multiple reasons, API Blueprint will
not be happy about having multiple responses listed with the same HTTP code.

This is only thrown as a warning and may only be related to Aglio and not API Blueprint itself - as the
documentation seems to display fine. Either put multiple body examples next to each other, or add multiple
response items with the same code and ignore the warnings.

11.6 Further Reading

The example.md file provided contains more examples than highlighted in this chapter.

Documentation 110

There is more to learn on the API Blueprint repository¹⁵, including more examples¹⁶. Their wiki has extensive
documentation of the “API Blueprint 1A Format” syntax¹⁷ too.

Between this chapter and those articles you should be documenting your own APIs within no time.

¹⁵https://github.com/apiaryio/api-blueprint
¹⁶https://github.com/apiaryio/api-blueprint/tree/master/examples
¹⁷https://github.com/apiaryio/api-blueprint/wiki/API-Blueprint-Roadmap

https://github.com/apiaryio/api-blueprint
https://github.com/apiaryio/api-blueprint/tree/master/examples
https://github.com/apiaryio/api-blueprint/wiki/API-Blueprint-Roadmap
https://github.com/apiaryio/api-blueprint
https://github.com/apiaryio/api-blueprint/tree/master/examples
https://github.com/apiaryio/api-blueprint/wiki/API-Blueprint-Roadmap

12 HATEOAS

12.1 Introduction

HATEOAS is a tricky subject to explain, but it is actually rather simple. It stands for “Hypermedia as the
Engine of Application State”, and is pronounced as either “hat-ee-os”, “hate O-A-S” or “hate-ee-ohs” - which
sounds a little like a cereal for API developers.

However you want to try and say it, it basically means two things for your API:

1. Content negotiation
2. Hypermedia controls

Inmy experience content negotiation is one of the first thingsmanyAPI developers implement.When building
my CodeIgniter Rest-Server extension it was the first feature I added, because hey - it is fun! Changing the
Accept header and seeing the Content-Type header in the response switch from JSON to XML or CSV is great,
and is super easy to do.

12.2 Content Negotiation

Some self proclaimed RESTful APIs (Twitter, I blame you for this) handle content negotiation with file exten-
sions. They do things like /statuses/show.json?id=210462857140252672 and /statuses/show.xml?id=210462857140252672
instead of just /statuses/210462857140252672 and letting the Accept header do the work.

URIs are not supposed to be a bunch of folders and file names, and an API is not a list of JSON files or XML
files. They are a list of resources that can be represented in different formats depending on the Accept header,
and nothing else.

A simple example of proper RESTful content negotiation requesting JSON

1 GET /places HTTP/1.1

2 Host: localhost:8000

3 Accept: application/json

A response would then contain JSON, if the API supports JSON as an output format.

HATEOAS 112

A shortened example of the HTTP response with JSON data

1 HTTP/1.1 200 OK

2 Host: localhost:8000

3 Connection: close

4

5 {

6 "data": [

7 {

8 "id": 1,

9 "name": "Mireille Rodriguez",

10 "lat": -84.147236,

11 "lon": 49.254065,

12 "address1": "12106 Omari Wells Apt. 801",

13 "address2": "",

14 "city": "East Romanberg",

15 "state": "VT",

16 "zip": 20129,

17 "website": "http://www.torpdibbert.com/",

18 "phone": "(029)331-0729x4259"

19 },

20 ...

21]

22 }

Many RESTful APIs will support JSON by default, or maybe only JSON as our sample app has done so far.
This is not realistic, but was done mainly for the sake of simplicity throughout the book so far.

XML is still a tricky one to do as you need to require view files, and that is out of scope of this chapter.

YAML however is rather easy to achieve, so we can see how content negotiation works with a little change
to our app. Check ∼/apisyouwonthate/chapter12/ for the updated sample app.

Themain change other than including the Symfony YAML component¹ was to simply update the ApiController::respondWithArray()
method to check the Accept header and react accordingly.

1 protected function respondWithArray(array $array, array $headers = [])

2 {

3 // You will probably want to do something intelligent with charset if provided.

4 // This chapter just ignores everything and takes the main mime-type value

5

6 $mimeParts = (array) explode(';', Input::server('HTTP_ACCEPT'));

7 $mimeType = strtolower($mimeParts[0]);

8

9 switch ($mimeType) {

¹http://symfony.com/doc/current/components/yaml/introduction.html

http://symfony.com/doc/current/components/yaml/introduction.html
http://symfony.com/doc/current/components/yaml/introduction.html

HATEOAS 113

10 case 'application/json':

11 $contentType = 'application/json';

12 $content = json_encode($array);

13 break;

14

15 case 'application/x-yaml':

16 $contentType = 'application/x-yaml';

17 $dumper = new YamlDumper();

18 $content = $dumper->dump($array, 2);

19 break;

20

21 default:

22 $contentType = 'application/json';

23 $content = json_encode([

24 'error' => [

25 'code' => static::CODE_INVALID_MIME_TYPE,

26 'http_code' => 415,

27 'message' => sprintf('Content of type %s is not supported.', $mimeType\

28),

29]

30]);

31 }

32

33 $response = Response::make($content, $this->statusCode, $headers);

34 $response->header('Content-Type', $contentType);

35

36 return $response;

37 }

Very basic, but now if we try a different mime-type we can expect a different result:

A HTTP request specifying the preferred response mime-type

1 GET /places HTTP/1.1

2 Host: localhost:8000

3 Accept: application/x-yaml

The response will be in YAML.

HATEOAS 114

A shortened example of the HTTP response with YAML data

1 HTTP/1.1 200 OK

2 Host: localhost:8000

3 Connection: close

4

5 data:

6 - { id: 1, name: 'Mireille Rodriguez', lat: -84.147236, lon: 49.254065, address1: '121\

7 06 Omari Wells Apt. 801', address2: '', city: 'East Romanberg', state: VT, zip: 20129, web\

8 site: 'http://www.torpdibbert.com/', phone: (029)331-0729x4259 }

9 ...

Making these requests programmatically is simple.

Using PHP and the Guzzle package to request a different response type

1 use GuzzleHttp\Client;

2

3 $client = new Client(['base_url' => 'http://localhost:8000']);

4

5 $response = $client->get('/places', [

6 'headers' => ['Accept' => 'application/x-yaml']

7]);

8

9 $response->getBody(); // YAML, ready to be parsed

This is not the end of the conversation for content negotiation, as there is a little bit more to talk about
with vendor-based mime-types for resources, which can be versioned too. To keep this chapter on point, that
discussion will happen in Chapter 13: API Versioning.

12.3 Hypermedia Controls

The second part of HATEOAS however is drastically underused, and is the last step in making your API
technically a RESTful API.

HATEOAS 115

Batman provides a standard response to often futile bucket remark “But it’s not RESTful if you…” Credit to Troy Hunt
(@troyhunt)

While you often hear complaints like “but that is not RESTful!” from people about silly things, this is one
instance where they are completely right. Without hypermedia controls you just have an API, not a RESTful
API. This is an aspect in which 99% of all APIs fall short.

RESTful Nirvana

1. “The Swamp of POX.” You’re using HTTP to make RPC calls. HTTP is only really used as
a tunnel.

2. Resources. Rather than making every call to a service endpoint, you have multiple
endpoints that are used to represent resources, and you’re talking to them. This is the very
beginnings of supporting REST.

3. HTTPVerbs. This is the level that something like Rails gives you out of the box: You interact
with these Resources using HTTP verbs, rather than always using POST.

4. Hypermedia Controls. HATEOAS. You’re 100% REST compliant.
– **Source: ** Steve Klabnik, “Haters gonna HATEOAS”²

That article is based off an article by Martin Fowler³ called “Richardson Maturity Model”⁴ and explains a
model written by Leonard Richardson⁵ covering what he considers to be the four levels of REST maturity.

So what are hypermedia controls? They are just links, a.k.a “Hyperlinks”, which you have probably been
using in your HTML output for years. I said early on in the book that REST is just using HTTP and the
same conventions as the actual internet instead of inventing new ones, so it makes sense that linking to other
resources should be the same in an API as it is in a web page.

²http://timelessrepo.com/haters-gonna-hateoas
³http://martinfowler.com/
⁴http://martinfowler.com/articles/richardsonMaturityModel.html
⁵http://www.crummy.com/

http://timelessrepo.com/haters-gonna-hateoas
http://martinfowler.com/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas
http://martinfowler.com/
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.crummy.com/

HATEOAS 116

The underlying theme of HATEOAS in general is that an API should be able to make perfect sense to an
API client application and the human looking at the responses, entirely without having to hunt through
documentation to work out what is going on.

Small HATEOAS concepts have sneakily been sprinkled throughout this book, from suggesting error codes
be combined with human readable error messages and documentation links, to helping the client application
avoid math when interacting with pagination. The underlying theme is always to make controls such as next,
previous or any other sort of related interaction clearly obvious to a human or a computer.

Understanding Hypermedia Controls

This is the easiest part of building a RESTful API, so I am going to try really hard to not just leave this section
at: “Just add links mate.” - which is my normal advice for anyone asking about HATEOAS.

Our usual data is output in such a way that only represents one or more resources. By itself, this one piece of
data is an island, completely cut off from the rest of the API. The only way to continue interacting with the
API is for the developer has read the documentation and understands what data can be related, and discover
where that data might live. This is far from ideal.

To tie one place to the related resources, sub-resources or collections is easy.

1 {

2 "data": [

3 "id": 1,

4 "name": "Mireille Rodriguez",

5 "lat": -84.147236,

6 "lon": 49.254065,

7 "address1": "12106 Omari Wells Apt. 801",

8 "address2": "",

9 "city": "East Romanberg",

10 "state": "VT",

11 "zip": 20129,

12 "website": "http://www.torpdibbert.com/",

13 "phone": "(029)331-0729x4259",

14 "links": [

15 {

16 "rel": "self",

17 "uri": "/places/2"

18 },

19 {

20 "rel": "place.checkins",

21 "uri": "/places/2/checkins"

22 },

23 {

24 "rel": "place.image",

25 "uri": "/places/2/image"

26 }

HATEOAS 117

27]

28]

29 }

Here are three simple entries, with the first is linking to itself. They all contain a uri (Unviversal Resource
Indicator) and a rel (Relationship).

URI v URL
The acronym “URI” is often used to refer to only content after the protocol, hostname and port
(meaning URI is the path, extension and query string), whilst “URL” is used to describe the
full address. While this is not strictly true, it is perpetuated by many software projects such as
CodeIgniter. Wikipedia⁶ and the W3⁷ say a bunch of conflicting things, but I feel like a URI is easily
described as being simply any sort of identifier for the location of a resource on the internet.

A URI can be partial, or absolute. URL is considered by some to be a completely non-existant term,
but this book uses URL to describe an absolute URI, which is what you see in the address bar. Rightly
or wrongly. Got it?

Some people scoff at the self relationship suggesting that it is pointless. While you certainly know what URL
you just called, that URL is not always going to match up with the self URI. For example, if you just created
a place resource you will have called POST /places, and that is not a what you would want to call again to
get updated information on the same resource. Regardless of the context, outputting a place always needs to
have a self relationship, and that self should not just output whatever is in the address bar. Basically put,
the self relationship points to where the resource lives, not the current address.

As for the other rel items, they are links to sub-resources which contain related information. The content of
the tags can be anything you like, just keep it consistent throughout. The convention used in this example is
to namespace relationships so that they are unique. Two different types of resources could have a checkins
relationship (eg: users and places) so keeping them unique could be of benefit for the sake of documentation
at least. Maybe you would prefer to remove the namespace, but that is up to you.

Those custom relationships have fairly unique names, but for more generic relationships you can consider
using the Registry of Link Relations⁸ defined by the IANA, which is used by Atom (RFC 4287⁹) and plenty of
other things.

Creating Hypermedia Controls

This is literally a case of shoving some links into your data output. However you chose to do that, it can be
part of your “transformation” or “presentation” layer.

If you are using the PHP component Fractal - which we has been used as an example throughout the book -
then you can simply do the following:

⁶http://wikipedia.org/wiki/Uniform_Resource_Identifier
⁷http://www.w3.org/TR/uri-clarification/
⁸http://www.iana.org/assignments/link-relations/link-relations.xhtml
⁹http://atompub.org/rfc4287.html

http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html
http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html

HATEOAS 118

PlaceTransformer with links included in the response data.

1 public function transform(Place $place)

2 {

3 return [

4 'id' => (int) $place->id,

5 'name' => $place->name,

6 'lat' => (float) $place->lat,

7 'lon' => (float) $place->lon,

8 'address1' => $place->address1,

9 'address2' => $place->address2,

10 'city' => $place->city,

11 'state' => $place->state,

12 'zip' => (float) $place->zip,

13 'website' => $place->website,

14 'phone' => $place->phone,

15

16 'links' => [

17 [

18 'rel' => 'self',

19 'uri' => '/places/'.$place->id,

20],

21 [

22 'rel' => 'place.checkins',

23 'uri' => '/places/'.$place->id.'/checkins',

24],

25 [

26 'rel' => 'place.image',

27 'uri' => '/places/'.$place->id.'/image',

28]

29],

30];

31 }

People try to get smarter and have various relationships based off of their $_SERVER settings or based off of
their ORM relationships, but all of that is just going to cause you problems. If you have these transformers
then you only need to write this lot out once and it avoids exposing any database logic and keeps your code
readable and understandable.

Once you have input these links, other people need to know how to interact with them. You might think
“Surely I should put GET or PUT in there so people know what to do?” Wrong. They are links to resources, not
actions. An image exists for a place, and we can either blindly assume we can make certain actions on it, or
we can ask our API what actions are available and cache the result.

HATEOAS 119

Discovering Resources Programmatically

Taking a shortened example from earlier on in this chapter, we can expect to see output like this:

1 {

2 "data": [

3 ...

4 "links": [

5 {

6 "rel": "self",

7 "uri": "/places/2"

8 },

9 {

10 "rel": "place.checkins",

11 "uri": "/places/2/checkins"

12 },

13 {

14 "rel": "place.image",

15 "uri": "/places/2/image"

16 }

17]

18]

19 }

We can assume that a GET will work on both the self and the place.checkins endpoints, but what else can
we do with them? Beyond that, what on Earth do we do with the place.image endpoint?

HTTP has us covered here, with a simple and effective verb that so far has not discussed: OPTIONS.

A HTTP request using the OPTIONS verb

1 OPTIONS /places/2/checkins HTTP/1.1

2 Host: localhost:8000

The response to the previous HTTP request

1 HTTP/1.1 200 OK

2 Host: localhost:8000

3 Connection: close

4 Allow: GET,HEAD,POST

By inspecting the Allow header, we as humans (or programmatically as an API client application) can work
out what options are available to us on any given endpoint. This is what JavaScript is often doing in your
browser for AJAX requests and you might not even know it.

Doing this programmatically is pretty easy too, and most HTTP clients in any given language will let you
make an OPTIONS call just as easily as making a GET or POST call. If your HTTP client does not let you do this,
then change your HTTP client.

HATEOAS 120

Making an OPTIONS HTTP request using PHP and the Guzzle package

1 use GuzzleHttp\Client;

2

3 $client = new Client(['base_url' => 'http://localhost:8000']);

4 $response = $client->options('/places/2/checkins');

5 $methods = array_walk('trim', explode(',', $response->getHeader('Accept'));

6 var_dump($methods); // Outputs: ['GET', 'HEAD', 'POST']

So in this instance we know that we can get a list of checkins for a place using GET, and we can add to them
by making a POST HTTP request to that URL. We can also do a HEAD check, which is the same as a GET but
skips the HTTP body. You will probably need to handle this differently in your application, but this is handy
for checking if a resource or collection exists without having to download the entire body content (i.e: just
look for a 200 or a 404).

It might seem a little nuts to go to this extra step to interact with an API, but really it should be considered
much easier than hunting for documentation. Think about it, trying to find that little “Developers” link on
the website, then navigate to the documentation for the correct API (because they are so cool they have about
three), then wondering if you have the right version… not fun. Compared that to a programmatically self-
documenting API, which can grow, change and expand over time, rename URLs and… well that is a real win.
Trust me.

If you know that an API follows RESTful principles then you should be confident that it follows HATEOAS -
because advertising it as RESTful without following HATEOAS is a big stinking lie. Sadly, most of the popular
APIs out there are big stinking liars.

GitHub responds with a 500, Reddit with 501 Not Implemented, Google maps with 405 Method
Not Allowed. You get the idea. I’ve tried many others, and the results are usually similar.
Sometimes it yields something identical to a GET response. None of these are right.
– Source: Zac Stewart, “The HTTP OPTIONS method and potential for self-describing RESTful
APIs”¹⁰

If you are building your own API then you can easily do this yourself, then your clients know that you know
how to build a decent API.

And that, is about all there is for HATEOAS. You should now know enough to go out and build up an API
that in theory you wont hate. Sadly, you will probably need to build a new version within a few months
regardless, so for that we will now take a look at API versioning.

¹⁰http://zacstewart.com/2012/04/14/http-options-method.html

http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

13 API Versioning

13.1 Introduction

Once you have built your wonderful new API, at some point it will need to be replaced or have new features
added. Sadly there is no real consensus on which approach is the “best”.

The general advice you will find most experts giving is: try to limit change as much as possible. That is a very
fair statement to make, but also seems like a bit of a cop-out. Regardless of how well planned your API is,
your business requirements will likely be what kills you.

In the startup world where things are less structured this can be a killer. Kapture started off with “Opportu-
nities”. which became “Photo Opps” and ended up being called “Campaigns.” You can laugh at that and say
it will never happen to you, but it will. When you are least expecting it, business requirements will come at
you like a wet mackeral to the face. When that happens, API versioning is your only solution.

Sure you could say that your API needs to maintain backward compatibility - but that is not
very realistic when you are properly reusing your API across your product line. To demonstrate
further, lets say you have 30 applications (and maybe a handful of external companies using the
API), all of which are relying on the “customer” REST resource - your choices now are:

1.) Keep it backward compatible (and lose the million dollar sale because you couldn’t implement
cool feature X)
2.) Change all 30 applications simultaneously to handle the new data (you likely don’t have
enough resource to do this and deliver on time)
3.) Make the change, breaking the apps you don’t have time to upgrade, but get the sale. (of course
you will fix the remaining apps in the future, right?)
– Source: Jeremy Highley, “Versioning and Types in REST/HTTP API Resources”¹

13.2 Different Approaches to API Versioning

As has been done in several other chapters, this chapter will outline several different approaches and list their
pros and cons. In other chapters the final suggestion is generally implied to be a “better” solution, but in this
chapter they are all compromises. Some are technically RESTful but incredibly complicated to implement, and
are also complicated for your users to use. This means you have to put some real thought into the approach.

Throughout this chapter will be references to various popular services with public APIs and the type of
API versioning they use. Credit goes to Tim Wood for compiling an extensive list in “How are REST APIs
versioned?”², which will be used for reference in this chapter.

¹http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
²http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/

http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/
http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/
http://thereisnorightway.blogspot.com.tr/2011/02/versioning-and-types-in-resthttp-api.html
http://www.lexicalscope.com/blog/2012/03/12/how-are-rest-apis-versioned/

API Versioning 122

Approach #1: URI

Throwing a version number in the URI is a very common practice amongst popular public APIs.

Essentially all you do here is put a v1 or 1 in the URL, so that the next version can be easily changed.

https://api.example.com/v1/places

Due to being so prolific throughout various public APIs, this is often the first approach API developers take
when building their own. It is by far the easiest and it does the job.

Twitter have two current versions: /1/ and /1.1/, which are both live at the the time of writing. This gives
developers a chance to update any code that is referencing the old endpoints, so they can use the new ones.
Most APIs would have called it /2/, but it was not a drastic change so perhaps they wanted a more subtle
number.

Some say that URI versioning allows for a more “copy & paste”-friendly URL than other approaches (many
of which involve HTTP headers) and this is supposedly better for support.

That might be true in some ways but seems like a bit of a misnomer. No RESTful API is ever going to
be entirely “copy & paste”-friendly because there will always be headers involved: Cache-Control, Accept,
Content-Type, Authorization, etc. Trying to make an entire API request fit in a URL just seems like a fools
errand.

While the copy-paste argument is simply a lack of a positive, this versioning approach does have some
potentially frustrating downsides.

The first thing people will say is that it is not technically RESTful. The idea is that a resource is meant to be
more like a permalink. This link should never change, and it should always be there - just like a blog post.
If the Internet is built around linking together and those links are changing all the time then… well things
break. This might not be something you are too concerned about - especially if the API is internal - but it can
be annoying for others.

For example, if you store the URL of an endpoint in your database for later reference, it might look like this:

https://api.example.com/v1/places/213

One day, you get an email from example.com saying that their v1 API is going to be deprecated in 3 months,
and you need to start using the v2 API as soon as you can.

If you update your code to match whatever updated format, with whatever new fields or renamed fields the
new version may contain then great, your new code will be ready to work with the new API version and you
can start saving the new URL when you enter the record in your database. That works for new records, but
you cannot leave the old records in there referencing the old API v1 URL.

So what do you do? One solution would be to string replace the old URL and hope the new URL is right:

https://api.example.com/v2/places/213

API Versioning 123

That might have worked, if it was not for the fact that you missed the note in the email that says they no
longer use auto-increment IDs in their URLs (they read that it was a bad idea somewhere) and have decided
to use slugs instead:

https://api.example.com/v2/places/taksim-bunk-hostel

Now what? The only solution here is to create a script that goes through each and every record in your
database, hits their v1 API and gets information (hopefully that slug is available) and then constructs a v2

compatible URL to store.

If you do that with a few million records then you will probably hit some API limits fairly quickly. Twitter
for example limits applications to 15 requests per endpoint per 15 minutes in some situations, so this would
take about two weeks to update 1 million records.

Maybe that sounds like an edge-case, but putting the API version in the URL is asking for all sorts of
obscure problems down the line, and asking your developers to manually construct resource URLs with string
replacement is just rude. Peter Williams pointed this out in an article titled “Versioning REST Web Services”³
back in 2008, but everyone has been consistently ignoring him it seems.

Another downside with this approach is that pointing v1 and v2 to different servers can be difficult, unless
you use some sort of Apache Proxy feature or nginx-as-a-proxy trickery. Generally speaking most systems
expect the same path to be on the same server and doing otherwise can lead to overhead, so if v1 is PHP and
v2 is Scala you can run into some trouble having them all set up on the same server.

The opposite of the “putting them on the same server can be hard” problem, is when API developers try and
let one single code-base take care of this versioning internally in their web app. They simply make routes with
the prefix /v1/places then when they want to make v2 they copy the routes, copy the controllers and tweak
things. This can be done if you also version your transformers (to maintain structure and data types), and you
are confident that all shared code (libraries, packages, etc) will maintain a consistent output throughout. This
is rarely the case, and people putting v1 in their URLs are just doing it because it is the only solution they
know.

Instead, consider making each version its own code-base. This means the code is totally separate, executed
separately, with different web server vhosts or maybe even on different servers.

If the APIs are very similar (same language, same framework, etc) then you can simply share a Git history -
be it different branch in the same api repository, or a different branch. Some people take the Git Flow⁴ model
and prepends version numbers, so one repository may have the following branches:

• 1.0/master
• 1.0/develop
• 2.0/master
• 2.0/develop

³http://barelyenough.org/blog/2008/05/versioning-rest-web-services/
⁴http://nvie.com/posts/a-successful-git-branching-model/

http://barelyenough.org/blog/2008/05/versioning-rest-web-services/
http://nvie.com/posts/a-successful-git-branching-model/
http://barelyenough.org/blog/2008/05/versioning-rest-web-services/
http://nvie.com/posts/a-successful-git-branching-model/

API Versioning 124

As long as you share a Git history you can pull from the other repository or branch, and merge changes up
from older versions to newer versions. This lets you fix bugs in multiple versions easily, instead of copying
and pasting between all of your controllers in the the same code-base.

Popular APIs

• Bitly
• Disqus
• Dropbox
• Bing (lol)
• Etsy
• Foursquare
• Tumblr
• Twitter
• Yammer
• YouTube

Pros

• Incredibly simple for API developers
• Incredibly simple for API consumers
• “Copy-and-paste-able” URLs

Cons

• Not technically RESTful
• Tricky to separate onto different servers
• Forces API consumers to do weird stuff to keep links up-to-date

Approach #2: Hostname

Some API developers try to avoid the issues with server setup found with putting the version in the URI and
simply put the version number in the hostname (or sub-domain) instead:

https://api-v1.example.com/places

This does not really solve any of the other problems. Having it in the URL in general (URI or sub-domain)
shares all the same problems for API consumers, but it does at least reduce the chances of API developers
trying to let one code-base handle it all.

Pros

• Incredibly simple for API developers

API Versioning 125

• Incredibly simple for API consumers
• “Copy-and-paste-able” URLs
• Easy to use DNS to split versions over multiple servers

Cons

• Not technically RESTful
• Forces API consumers to do weird stuff to keep links up-to-date

Approach #3: Body and Query Params

If you are going to take the URI version out of the URL, then one of the two other places to put it is the HTTP
Body itself:

1 POST /places HTTP/1.1

2 Host: api.example.com

3 Content-Type: application/json

4

5 {

6 "version" : "1.0"

7 }

This solves the problem of URLs changing over time, but can lead to inconsistent experiences. If the API
developer is posting JSON or a similar data structure then that is easy, but if they are posting with a
Content-Type of image/png or even text/csv then this becomes very complicated very quickly.

Some suggest the solution to that problem is to move the parameter to the query string, but now the API
version is in the URL again! Immediately many of the problems of the first two approaches are back.

1 POST /places?version=1.0 HTTP/1.1

2 Host: api.example.com

3

4 header1,header2

5 value1,value2

This… just do something else. Many PHP frameworks ignore the query string under anything other than
a GET request, which goes against the HTTP specification but is still common. Having this parameter that
moves around inside different content types in the body or sometimes in the URL or even always in the URL
regardless of the HTTP Verb being used is just confusing.

Popular APIs

• Netflix
• Google Data

API Versioning 126

• PayPal
• Amazon SQS

Pros

• Simple for API developers
• Simple for API consumers
• Keeps URLs the same when param is in the body
• Technically a bit more RESTful than putting version in the URI

Cons

• Different content-types require different params, and some (like CSV) just do not fit
• Forces API consumers to do weird stuff to keep links up-to-date when the param is in the query string

Approach #3: Custom Request Header

So if the URL and the HTTP body is a bad place to put API version information, where else is left? Well,
headers of course!

1 GET /places HTTP/1.1

2 Host: api.example.com

3 BadApiVersion: 1.0

This example was lifted from Mark Nottingham⁵, who is the chair of the IEFT HTTPbis Working Group⁶ at
the time of writing. That group is in charge of revising HTTP 1.1 and working on HTTP 2.0. He has this to
say about custom version headers:

This is broken and wrong for a whole mess of reasons. Why?

First, because the server’s response depends on the version in the request header, it means that
the response really needs to be:

1 HTTP/1.1 200 OK

2 BadAPIVersion: 1.1

3 Vary: BadAPIVersion

Otherwise, intervening caches can give clients the wrong response (e.g., a 1.2 response to a 1.1
client, or vice versa).
– Source:Mark Nottingham, “Bad HTTP API Smells: Version Headers”⁷

⁵http://www.mnot.net/
⁶http://trac.tools.ietf.org/wg/httpbis/trac/wiki
⁷http://www.mnot.net/blog/2012/07/11/header_versioning

http://www.mnot.net/
http://trac.tools.ietf.org/wg/httpbis/trac/wiki
http://www.mnot.net/blog/2012/07/11/header_versioning
http://www.mnot.net/
http://trac.tools.ietf.org/wg/httpbis/trac/wiki
http://www.mnot.net/blog/2012/07/11/header_versioning

API Versioning 127

Without specifying the Vary header, it is hard for a cache system like Varnish to know that somebody asking
for 1.0 because the URL is any different than somebody asking for 1.1 or 2.0. That can be a big problem as
API consumers asking for a specific version need to get that version, not a different one.

Beyond that rather tricky caching issue, it is just generally annoying. If you use a custom header then API
consumers need to go and look at your documentation to remember which it is. Maybe it is API-Version or
Foursquare-Version or X-Api-Version or Dave. Who knows, and who can remember.

Popular APIs

• Azure

Pros

• Simple for API consumers (if they know about headers)
• Keeps URLs the same
• Technically a bit more RESTful than putting version in the URI

Cons

• Cache systems can get confused
• API developers can get confused (if they do not know about headers)

Approach #4: Content Negotiation

The Accept header is designed to ask the server to respond with a specific resource in a different format.
Traditionally many developers think of this in terms of only (X)HTML, JSON, Images, etc, but it can be more
generic than that. If we can RESTfully ask for our data to come back with different content-types having
different syntax, then why not reuse this exact same header for versions too?

GitHub follow the advice of many of the people named in this chapter so far, and use the Accept header to
return different Media Types.

All GitHub media types look like this:

application/vnd.github[.version].param[+json]

The most basic media types the API supports are:

application/json

application/vnd.github+json

– Source: GitHub, “Media Types”⁸

⁸https://developer.github.com/v3/media/#api-v3-media-type-and-the-future

https://developer.github.com/v3/media/#api-v3-media-type-and-the-future
https://developer.github.com/v3/media/#api-v3-media-type-and-the-future

API Versioning 128

Basically if you ask for application/json or application/vnd.github+json then you are going to get JSON.
Without specifying further, they will show you the current default response, which at the time of writing is
v3 but could at any time change to v4. They warn that if you do not specify the version then your apps will
break! Fair enough.

To specify the version, you must use Accept: application/vnd.github.v3+json, then if the default switches
to v4 at some point in the future, your application will continue to use v3.

This solves the caching problem, solves the URL manipulation problems of the URL-based versioning
approaches, is considered rather RESTful, but can confuse some developers. Maybe train them to get used
to it, or maybe stick with URL-based versioning, but it is semantically more correct and generally works very
well. This was done at Kapture for the internal API and it worked without problems.

The only downside is one that is found with all of the approaches mentioned so far, which is: If you version
the entire API as a whole, it becomes very hard for API developers to upgrade their applications. It could be
that only 10% of the API has changed between versions, but changing the version of the entire API can scare
developers. Even with a changelog, it is hard for the developer to know if their entire application is going to
completely break when they switch over. Even an extensive test-suite is not going to catch every issue with
a third-party service like this because most developers use hard-coded JSON responses in their unit-tests to
mock interactions.

If changing the version of the whole API is too much, the only other option is to version parts of the API.

Popular APIs

• GitHub

Pros

• Simple for API consumers (if they know about headers)
• Keeps URLs the same
• HATEOAS-friendly
• Cache-friendly
• Sturgeon-approved

Cons

• API developers can get confused (if they do not know about headers)
• Versioning the WHOLE thing can confuse users (but all previous approaches are the same in this)

Approach #5: Content Negotiation for Resources

Generally accepted to be the proper HATEOAS approach, content negotiation for specific resources using
media-types is one of the most complex solutions, but is a very scalable way to approach things. It solves the
all or nothing approach of versioning the entire API, but still lets breaking changes be made to the API in a
manageable way.

Basically, if GitHub were to do this, they would take their current media-type and add an extra item:

API Versioning 129

1 Accept: application/vnd.github.user.v4+json

Alternatively, the Accept header is capable of containing arbitrary parameters.

1 Accept: application/vnd.github.user+json; version=4.0

This was suggested by Avdi Grimm⁹ and written about in an article by Steve Klabnik¹⁰ called “Nobody
Understands REST or HTTP”¹¹. That whole article is a great rant containing lots of useful advice which was
written in 2011. Again, most API developers seem to have ignored this advice or simply not known about it.

Picking between application/vnd.example.place.v1+json and application/vnd.example.place.json;

version=1 will no doubt have pros and cons itself. Apparently Rails is not able to pick up the latter - or
at least could not in 2011 - but that should not be considered much of a reason.

The other argument using the latter media type is that arbitrary parameter names can have the same confusion
as arbitrary version header names, but developers can all just agree to just call it version. Right?

Whichever way you end up specifying the header, the advantage is not just specifying “I want the v4 API”
but instead saying “I would like the v4 version of a place(s).” Services that provide an API can email their API
consumers saying “We are updating the way places work, here is an example of the resource, here is what
you need to change, specify the new version when you are ready.”

Partial updates like this ease third-party efforts to upgrade applications, and the chances of leaving developers
stranded on an older version becomes far less likely.

Popular APIs

• GitHub

Pros

• HATEOAS-friendly
• Cache-friendly
• Keeps URLs the same
• Easier upgrades for API consumers
• Can be one codebase or multiple

Cons

• API consumers need to pay attention to versions
• Splitting across multiple code-bases is not impossible, but is hard
• Putting it in the same code-base leads to accidental breakage, if transformers are not versioned

⁹http://about.avdi.org/
¹⁰http://blog.steveklabnik.com/
¹¹http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned

http://about.avdi.org/
http://blog.steveklabnik.com/
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned
http://about.avdi.org/
http://blog.steveklabnik.com/
http://blog.steveklabnik.com/posts/2011-07-03-nobody-understands-rest-or-http#i_want_my_api_to_be_versioned

API Versioning 130

Approach #6: Feature Flagging

This approach is something that so far I have only seen done by Facebook and its Graph API. Their approach
is interesting, but not as common as some of these other approaches.

Facebook do not version their entire API with simple numbers like anybody else does. They do not version
their resources, and they do not allow you to request different versions with headers, parameters or anything
else.

They essentially make a custom version for each single client application. The way this works is there are
various feature flags, which they call “Migrations.” They put out a migration every few months, write a
blog, email API developers about it, and ask those developers to log into the developer area on the Facebook
platform to manage their application.

Basically, they warn you that things are going to break in a few months. They list all the changes and give
the chance to see if this will effect your application. If your application does not use an endpoint that is
being changed, or they are removing a field your application does not use then you can click “Enable” for the
migration. From that point on any interaction your application has with the Facebook Graph API will use the
new format.

If you wait, eventually they will flip that switch regardless. This is considered a fair warning, and means they
never have to support an old version for years. Facebook simply maintain one version with a few feature flags
and those flags exist for a few months before that old code is removed. If your application still uses the old
format then… tough.

This system to me has the most benefits, but one tricky part is that getting the timing right for that changeover
is hard on API consumers. If your code is live looking at the old style, then you cannot push new code for
the new style, because it will be broken until you flip the switch. That might only be seconds, but if you have
multiple applications then you have to update and deploy all of them within minutes (or seconds) and then
flip the switch.

Realistically speaking, that is very hard to do, so you end up with code having a lot of if statements, ready
to look for fields that may or may not be there depending on the version. That leads to lots of extra code and
you have to remember to remove it afterwards by shoving comment blocks throughout your code:

1 # @TODO Kill this when Facebook September 13 Migration is confirmed working

This is not insanely hard, but it can be complicated sometimes.

Generally speaking, the Feature Flag solution is the easiest for API consumers if the changes happen to hit a
part of the API they do not care about. They do not need to be scared of changing to a whole new version of
the API, they know their code will work, and things seem safer. If they do require changes then… well a few
if statements never really hurt anyone.

13.3 Ask Your Users

None of these will have a drastic impact on your business, especially if you API is internal. If you are creating
a platform as big as Facebook then maybe you need a solution as complex as theirs, but that is probably not
the case.

API Versioning 131

My advice with versioning (as with most aspects of your API) is to know your audience. Twitter gets away
with flagrant disregard for almost every single concept or principle that ever makes something RESTful whilst
still calling it a REST API, so you can probably break a few rules too.

If I may leave others considering how to version their APIs with a final thought: Nobody will
use your API until you’ve built it. Stop procrastinating. None of these are “bad” in any tangible
sense, they’re just different.
They are all easily consumable, they all return the same result and none of them are likely to
have any real impact on the success of your project.
– Source: Troy Hunt, “Your API versioning is wrong, which is why I decided to do it 3 different
wrong ways”¹²

The real truth is that all of the approaches are annoying in some ways, or technically “unRESTful” in some
respects, or difficult, or a combination of it all. You have to pick what is realistic for your project in both the
difficulty of the implementation and the skill/knowledge level of your target audience.

¹²http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html

http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html

Conclusion
Thank you for reading the whole way through this book. This was a large and complex topic which I tried to
turn into an interesting read with some humor.

It has been a really enjoyable experience and I have been blown away with the positive feedback. I have also
received plenty of constructive criticism for which I am also grateful.

I will continue tomaintain this book and I have some requests, suggestions and general ideas for improvements
to make. But, if you have read this then the meat of the book is now the same as it will always be.

For example, I plan to;

• Improve the Behat test coverage on the sample application.
• Implement league\oauth2-server¹³ for the PHP sample app.

A dilema I am having currently is that any further explanation of RESTful API development is just going to
be paraphrasing content in the HTTP 1.1 Specification¹⁴. RESTful APIs respect as many aspects of the HTTP
spec as possible, so headers like Accept-Language, Expires, Etag, Retry-After, etc could be catered for. A
whole book could be written about the HTTP spec itself, so it seems somewhat outside the scope of this book.
I will probably add in one last chapter on caching at a later point and leave it there.

This has been a great project, and a much needed break from writing code non-stop 24/7. Back to it I guess!

¹³https://github.com/thephpleague/oauth2-server
¹⁴http://www.w3.org/Protocols/rfc2616/rfc2616.html

https://github.com/thephpleague/oauth2-server
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://github.com/thephpleague/oauth2-server
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Further Reading
Here are some books that you should consider reading. While are not directly about API development, they
are about related subjects. APIs must be secure. APIs need to be tested. APIs need virtual machines to run on,
and they need provisioning tools to keep those virtual machines in check.

Building Secure PHP Apps¹⁵ - Is your PHP app truly secure? Let’s make sure you get home on time and sleep
well at night.

The Grumpy Programmer’s PHPUnit Cookbook¹⁶ - Learning how to use PHPUnit doesn’t have to suck. Your
code is untested and fixing bugs is tedious. You know you need something better, but time just doesn’t seem
to be on your side. Making things “right” is costly and you need to deliver working code NOW.

Vagrant Cookbook¹⁷ - Learn how to create effective Vagrant development environments. This book will cover
from basic to advanced concepts on Vagrant, including important ProTips to improve your Vagrant projects
and avoid common mistakes. The book was updated to cover the new features on Vagrant 1.5, which are
substantial compared to previous versions.

Laravel 4 Cookbook¹⁸ - This book is contains various projects built in the Laravel 4 framework, written by a
well known Laravel 4 developer from sunny South Africa.

¹⁵https://leanpub.com/buildingsecurephpapps
¹⁶https://leanpub.com/grumpy-phpunit
¹⁷https://leanpub.com/vagrantcookbook
¹⁸https://leanpub.com/laravel4cookbook

https://leanpub.com/buildingsecurephpapps
https://leanpub.com/grumpy-phpunit
https://leanpub.com/vagrantcookbook
https://leanpub.com/laravel4cookbook
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/grumpy-phpunit
https://leanpub.com/vagrantcookbook
https://leanpub.com/laravel4cookbook

	Table of Contents
	Introduction
	Sample Code
	Useful Database Seeding
	Introduction
	Introduction to Database Seeding
	Building Seeders
	That's about it
	Secondary Data
	When to run this?

	Planning and Creating Endpoints
	Functional Requirements
	Endpoint Theory
	Planning Endpoints

	Input and Output Theory
	Introduction
	Requests
	Responses
	Supporting Formats
	Content Structure

	Status Codes, Errors and Messages
	Introduction
	HTTP Status Codes
	Error Codes and Error Messages
	Error or Errors
	Common Pitfalls

	Endpoint Testing
	Introduction
	Concepts & Tools
	Setup
	Initialise
	Features
	Scenarios
	Prepping Behat
	Running Behat

	Outputting Data
	Introduction
	The Direct Approach
	Transformations with Fractal
	Hiding Schema Updates
	Outputting Errors
	Testing this Output
	Homework

	Data Relationships
	Introduction
	Sub-Resources
	Foreign Key Arrays
	Compound Documents (a.k.a Side-Loading)
	Embedded Documents (a.k.a Nesting)

	Debugging
	Introduction
	Command-line Debugging
	Browser Debugging
	Network Debugging

	Authentication
	Introduction
	When is Authentication Useful?
	Different Approaches to Authentication
	Implementing an OAuth 2.0 Server
	Where the OAuth 2.0 Server Lives
	Understanding OAuth 2.0 Grant Types

	Pagination
	Introduction
	Paginators
	Offsets and Cursors

	Documentation
	Introduction
	Types of Documentation
	Picking a Tool
	Setting up API Blueprint and Aglio
	Learning API Blueprint Syntax
	Further Reading

	HATEOAS
	Introduction
	Content Negotiation
	Hypermedia Controls

	API Versioning
	Introduction
	Different Approaches to API Versioning
	Ask Your Users

	Conclusion
	Further Reading

