

API Architecture:
	
The Big Picture for Building APIs
	

API Unive rsity Se rie s - Volume 2
www.api-university.com

Copyright © 2015 by Matthias Biehl
	
All rights reserved, including the right to reproduce
	

this book or portions thereof in any form whatsoever.
	
ISBN-13: 978-1508676645
	
ISBN-10: 150867664X
	

Synopsis

Looking for the big picture of building APIs? This book is for you!

Building APIs that consumers love should certainly be the goal of any API
initiative. However, it is easier said than done. It requires getting the
architecture for your APIs right. This book equips you with both foundations
and best practices for API architecture. This book presents best practices for
putting an infrastructure in place that enables efficient development of APIs.

This book is for you if you want to understand the big picture of API design
and development, you want to define an API architecture, establish a platform
for APIs or simply want to build APIs your consumers love.

This book is NOT for you, if you are looking for a step-by step guide for
building APIs, focusing on every detail of the correct application of REST
principles. In this case I recommend the book API Design of the API-
University Series.

What is API architecture? Architecture spans the bigger picture of APIs and
can be seen from several perspectives:

API architecture may refer to the architecture of the complete solution
consisting not only of the API itself, but also of an API client such as a
mobile app and several other components. API solution architecture
explains the components and their relations within the software solution.
API architecture may refer to the technical architecture of the API
platform. When building, running and exposing not only one, but several

http://www.api-university.com/
http://www.matt-biehl.de

APIs, it becomes clear that certain building blocks of the API, runtime
functionality and management functionality for the API need to be used
over and over again. An API platform provides an infrastructure for
developing, running and managing APIs.
API architecture may refer to the architecture of the API portfolio. The
API portfolio contains all APIs of the enterprise and needs to be managed
like its product. API portfolio architecture analyzes the functionality of
the API and organizes, manages and reuses the APIs.
API architecture may refer to the design decisions for a particular API
proxy. To document the design decisions, API description languages are
used. We explain the use of API description languages on many examples.

This book covers all of the above perspectives on API architecture. However,
to become useful, the architecture needs to be put into practice. This is why
this book covers an API methodology for design and development. An API
methodology provides practical guidelines for putting API architecture into
practice. It explains how to develop an API architecture into an API that
consumers love.

A lot of the information on APIs is available on the web. Most of it is
published by vendors of API products. I am always a bit suspicious of
technical information pushed by product vendors. This book is different. In this
book, a product-independent view on API architecture is presented.

The API-University Series is a modular series of books on API-related topics.
Each book focuses on a particular API topic, so you can select the topics
within APIs, which are relevant for you.

Keywords: API Management, API Architecture, Integration, API Description
Languages, RAML, Swagger, API

Introduction
What is an API?

People use software via a user interface. Applications can use software as
well, via an API, an Application Programming Interface. Thus, an API offers a
simple way for connecting to, integrating with and extending a software
system.

APIs are a generic concept that can be used in many ways and thus there are
many definitions that capture one aspect of APIs, such as:

An API is a web service: It delivers resources via web technologies such
as HTTP. APIs are used for building distributed software systems and
enable loose coupling.
An API is simple, clean, clear and approachable: It is like a socket that
different apps can connect to easily, just like different appliances are
plugged into an electricity socket.
An API provides a bridge between company-internal data providers and
company-external data consumers.

APIs are usually not visible on the surface, do not offer a user interface, and
typically no end user will directly interact with them. Instead, APIs operate
under the hood and are only directly called by other software. APIs are used in
machine to machine communication and the integration of two or more
software systems. The only people interacting with APIs directly are the
developers creating applications or solutions with the APIs.

This is why APIs need to be built with the developers in mind who will
integrate them into new applications. This means that the ease of use for the
developer is extremely important. APIs need to be simple and efficient from
their perspective. This often requires a change in the perspective for building
services. So far, services have been built form the perspective of the service
provider. APIs need to be built from the consumer's perspective.

Why APIs?
An API offers a simple way for connecting to, integrating with and extending
software systems. Now, think about the entities that are run by software.
Businesses, markets and banks are run by software. Industrial production
processes are controlled by software. Machines, cars and many consumer
products contain software. However, these software systems are typically
isolated and functionality of one system cannot be accessed from the other
system. APIs provide a possibility to connect these separate software entities.
APIs provide the capabilities which are essential for connecting, extending and
integrating software. And by connecting software, APIs connect businesses
with other businesses, businesses with their products, services with products

or products directly with other products.

Just one example for the business to business integration: The business of an
enterprise can be expanded by linking the business to partners up and down the
value chain. Since businesses are run by IT, the businesses can be better linked
by integrating the IT systems of a business up and down the value chain to the
IT systems of other businesses, partners, employees and to customers. A
business can strive if it is better linked to its external partners. This can be
accomplished if the IT systems of the business partners are linked via
services.

However, an enterprise cannot force its business partners to use its services. It
can make these services so good -- so valuable and simple -- that the business
partners will want to use them. If these services are good, they can become a
means for retaining existing partners and a means for obtaining new partners.
But what makes a service good? A service is good if

it is valuable and helps the partner to perform his business.
it fits the exact needs of the partner.
it is simple to understand.
it is easy to integrate and monitor for the partner.
it is secure, reliable and performant.

The infrastructure for enabling this connection is already in place. Each and
every person, each employee and each customer has a smart, internet-enabled
device, businesses have websites and web-services. Even an increasing
number of the products sold by the businesses carry digital sensors and are
internet enabled. All these devices are connected to the internet and can - in
principle - be connected.

APIs are used for internal and external integration. APIs can enable better
integration between departments and business units of a company. Amazon, for
example, uses APIs to integrate the IT systems of its departments. If the
interfaces and technology are already in place for internal integration, it
becomes easier to provide external integration. External integration is used
with business partners or external entities for staying competitive. External
APIs are also necessary for realizing mobile apps. Interesting mobile apps use
company data, data that is delivered to the app via APIs.

The API initiative of an enterprise is often regarded as the innovation lab of an
enterprise. To fulfill this vision, the API portfolio should enable the enterprise
to build innovative apps with little effort and spark creativity. By making
company assets easily available through API, new uses of these assets can be
found. Since APIs provide a new, simple way for accessing company assets,
assets can be used in new ways within the company. Providing external access
to company assets, enables third party developers, who are not even on your
pay roll, to create innovations for your organization.

How to use APIs?

APIs are built to be simple to use. APIs are not called by end-users directly,
but they are integrated into apps. These apps are offered to end users. The
complete solution, which uses APIs, typically consists of:

A client or app that calls the APIs and processes the data provided by the
APIs. This client is responsible for the end-user experience.
A number of APIs that provide the data to the app
An API platform that manages the APIs

How to build APIs?

I will get back to APIs in a moment. For now, let us assume that we were in the
car manufacturing business and we would like to build a new car... What
would we have to do?

1. We find out, how the consumer would want to use the new car.
2.		We design the car, so it fits into the portfolio of different models that our

company sells - sports cars, vans and trucks.
3.		We choose the architectural style, i.e. if the car uses a diesel engine,
	

hybrid engine or a fully electric engine.
	
4.		We design a blueprint of the car according to the consumer ’s needs and

wants. We simulate components of the car and build a prototype.
5. We select the component suppliers of our car parts.
6.		Finally, we configure the assembly line for putting all the car parts
	

together efficiently.
	

Could work. And what would the corresponding steps be, when building an
API?

1.		We find out, how the majority of consumers would want to use the new
API.

2.		We design the API, so it fits into the portfolio of different APIs that our
company offers.

3.		We choose the architectural style, i.e. if the API applies a REST, RPC or
SOAP style.

4.		We design a blueprint of the API using an API description language, such
as RAML or Swagger. We simulate the API and build a prototype of the
API.

5.		We select the API platform, which provides the reusable building blocks
for the APIs.

6.		Finally, we use a generative API methodology to develop APIs
efficiently. Of course, the generative techniques are only used as far as
possible, at some point some code might still need to be written.

Having a methodology for building APIs that we can come back to as a
guideline is extremely helpful, especially when building enterprise APIs. Such
a methodology is tightly connected to the architecture, which provides the red
thread throughout the methodology. In a later chapter we propose an
methodology for APIs.

What is API Architecture?

What most API design books focus on is the use of HTTP methods, URL
design, HTTP status codes, HTTP headers and the structure of the resources in
the HTTP body. However, this is actually the smallest challenge when building
APIs. The real challenge is finding an API architecture and defining the
methodology.

API architecture is way more than the correct application of REST principles.
So what is API architecture? API Architecture spans the bigger picture of APIs
and can be seen from several perspectives:

API architecture may refer to the architecture of the complete solution
consisting not only of the API itself, but also of an API client such as a
mobile app and several other components. API solution architecture
explains the components and their relations within the software solution.
API architecture may refer to the technical architecture of the API
platform. When building, running and exposing not only one, but several
APIs, it becomes clear that certain building blocks of the API, runtime
functionality and management functionality for the API need to be used
over and over again. An API platform provides an infrastructure for
developing, running and managing APIs.
API architecture may refer to the architecture of the API portfolio. The
API portfolio contains all APIs of the enterprise and needs to be managed
like its product. API portfolio architecture analyzes the functionality of
the API and organizes, manages and reuses the APIs.
API architecture may refer to the design decisions for a particular API
proxy. To document the design decisions, API description languages are
used. We explain the use of API description languages on many examples.

This book covers all of the above perspectives on API architecture. Which one
are you interested in? Jump to the respective chapter.

How to put API Architecture into Practice?

To become useful, the API architecture needs to be put into practice. This is
why this book covers an API methodology for design and development. An
API methodology provides practical guidelines and explains how to develop
an API architecture into an API that consumers love.

The methodology we propose is an outside-in approach, which also
incorporates ideas of contract first design and simulation. In this methodology,
the contract is expressed in the form of an API description. In each step of the
methodology, an API description is either created, refined or used -- the API
description is the red thread connecting all the steps of the methodology.

Why is API Architecture Important?

It is very hard to move the pillar of a bridge, which is made of steel and
concrete. Such changes are difficult, costly and time intensive. This is why a
blueprint is created before building the bridge. It allows planning all the
details, iterating over several proposals and performing what-if analysis.
Changes to the plan are easy and cheap to perform. And by making changes to
the plan, it hopefully becomes unnecessary to make changes to the real
artifacts. The same is true for APIs.

When APIs have already been built, changes are difficult, expensive and time-
intensive. Even worse, the changes to published APIs might break any clients
using the API. In consequence, the consumers might get upset and switch the
API provider. To avoid this, the API needs to be right from the start, by the first
time it is published.

This can be achieved by planning ahead with an API architecture. An
appropriate API architecture increases the efficiency of building the right API,
reduces the cost and time for both construction and maintenance and thus
reduces technical risk associated with the construction.

An API architecture is an approach for risk mitigation. It enforces that the
approach is well thought out before construction is started. It avoids situations,
in which resources are spent on implementing APIs, which cannot possibly fly.

An appropriate API architecture enables a contract-first design approach.
Once the architecture is externalized and written down it can be used not only
by the API providers to implement the API proxy, but also by API consumers
to build apps with this API. The API consumer does not have to wait for the
API to be finished, but development of API and app can proceed in parallel.

Non-functional properties of the API should not be an afterthought. The API
needs to be designed right from the start to fulfill all non-functional properties
such as security, performance, availability. Based on an architecture, the
implications of the architectural choices on non-functional properties can be
determined early in the design.

Proper architecture and design of the APIs is an investment. In the long run, it
will save time and even help avoiding mistakes.

Overview of this Book

Architecture usually spans the bigger picture of APIs. However, the bigger
picture can be seen from several perspectives. This is why we explain API
architecture from different perspectives: solution, platform, portfolio, and
proxy. You can easily determine which perspective is right for you.

Software solutions, such as Google Maps or Twitter, consist not only of the
API itself, but also of a mobile app or a web app, but also of APIs, which
typically remain under the surface. API solution architecture explains the
components and how the relate within the software solution.

When building not only one, but several APIs, it becomes clear that certain
building blocks of the API solution need to be used over and over again. A
library of these common building blocks helps building APIs efficiently. Such
a library of building blocks is available on API platforms. The API platform
architecture shows different approaches for managing your API portfolio and
introduces different types of platforms.

Organizations typically do not only expose a single API, but several. Together
they form the API portfolio. API portfolio architecture organizes, manages and
uses the APIs.

The API proxy architecture comprises the construction of a single API. Some
basic design decisions need to be made about the architectural design patterns
employed and the architectural style to be followed. We introduce REST and
HATEOAS, the commonly used style for API proxies, all without becoming
religious about one or the other.

To document the design decisions of both API and portfolio architecture, API
description languages are used. We explain their use, show different languages
and present examples.

The API methodology provides some hints on developing the API proxy
architecture into an API. This methodology is built around API description
languages.

Table of Contents
	

Introduction
What is an API?
Why APIs?
How to use APIs?
How to build APIs?
What is API Architecture?
How to put API Architecture into Practice?
Why is API Architecture Important?
Overview of this Book

API Solution Architecture
Types of API Solutions
	

Mobile Solutions
	
Cloud Solutions
	
Web Solutions
	
Integration Solutions
	
Multi-Channel Solutions
	
Smart TV Solutions
	
Internet of Things
	

Stakeholders in API Solutions
	
API Providers
	
API Consumers
	
End Users
	

API-related Design Decisions
What do all types of API solutions have in common?
Functionality in the client or in the API?
Use existing API or build a new API?
How to choose a third party API?

Step 1: Find the API
Step 2: Learn about the API
Step 3: Test the API
Step 4: Use the API

API Platform Architecture
Overview
API Development Platform

Library of API Building Blocks
Language for Implementing APIs
Language for Designing APIs

API Runtime Platform
	
API Engagement Platform
	
API Platform Configurations and Interactions
	

Different Environments
API Platform Deployment Models
Interactions between the Platforms

Design and Development
Deployment
Publishing

Surrounding Systems
Load Balancers and Firewalls
Identity and Access Management Infrastructure
Existing Functionality in Backends
New Functionality
Enterprise Service Buses and SOA Platforms

API Portfolio Architecture
Requirements
	

Consistency
	
Reuse
	
Customization
	
Discoverability
	
Longevity
	

Governance
	
Consistency
	

Consistency Checks in Practice
	
Reuse
	

Reuse of API Features
	
Reuse of Complete APIs
	
Reusing own APIs
	
Reusing Third Party APIs
	

Customization
	
Customization Approach
	
Summary
	

Discoverability
	
Manual Discovery
	
Automated Discovery
	

Change Management and Versioning
The Evolution Challenge
Why does the Evolution Challenge exist at all?
Classifying API Evolution

Backward Compatible Changes
Forward Compatible Changes
Incompatible Changes

Dealing with Evolution in APIs
Hypermedia
Provisioning

Anticipating and Avoiding Evolution
Prevent Feature Creep

API Proxy Architecture
Requirements for APIs

Responsibilities of APIs
Gathering Data
Structuring and Formatting Data
Delivering Data
Securing and Protecting

Desirable Properties of APIs
	
Architectural Patterns
	

Client Server Patterns
	
Stateful Server Pattern
	

Stateless Server Pattern
	
Facade Pattern
	

Advanced Use of the Facade Pattern
	
Proxy Pattern
	

Architectural Styles
	
REST Style
	

REST Concepts
	
REST Constraints
	
Advantages of REST
	

HATEOAS Style
	
HATEOAS Concepts
	
HATEOAS Constraints
	
Advantages of HATEOAS
	

RPC Style
	
How does RPC work?
	
JSON-RPC
	
XML-RPC
	

SOAP Style
Architectural Trade-offs

RPC in Comparison to REST
HATEOAS in Comparison to REST
SOAP in Comparison to REST
Conclusion

API Description Languages
What are API Description Languages?

API Description Language vs. API Development Language
Usage
	

Communication and Documentation
	
Design Repository
	
Contract Negotiation
	
API Implementation
	
Client Implementation
	
Discovery
	
Simulation
	

Language Features
Swagger
	

Introduction
	
Example
	
Root Element
	
Resources
	
Schema
	
Parameters
	
Reusable Elements
	
Security
	

Security Definition
	
Security Binding
	

RAML
	
Introduction
	
Example
	
Root Element
	

Resources
	
Schema
	
Parameters
	

Path Parameters
	
Query Parameters
	
Form Parameters
	
Header Parameters
	

Reusable Elements
External Elements: Inclusion of Files
Internal Elements: Definition of Resource Types and Traits
Internal Elements: Usage of Resource Types and Traits

Security
Summary

API Methodology
Foundations

Consumer-oriented Design Approach
	
Inside-out Approach
	
Outside-in Approach
	

Contract First Design Approach
	
Agile Design Approach
	
Simulation-based Design
	

Simulation of Backends
	
Simulation of the API
	

Conclusion
	
Methodology
	

Overview
	
Phase 1: Domain Analysis
	

Verification of Phase 1: Simulation & Demo App
Phase 2: Architectural Design

Verification of Phase 2: Simulation & Demo App
Phase 3: Prototyping

Validation of Phase 3: Acceptance Tests with Pilot Consumers
Phase 4: Implementation for Production

Verification of Phase 4: Acceptance Tests with Pilot Consumers
Phase 5: Publish

Verification of Phase 5: Study Metrics, Reports and Logs
Maintenance
Discussion

Hand-off Points
	
Pre-Work vs. Actual Work
	

Summary
Conclusion
Backmatter
References

API Solution Architecture
To understand the demands and requirements on APIs, let us first study some
typical solutions that are enabled by APIs, such as cloud services, mobile
apps, multi-channel and omni-channel solutions, web applications and the
internet of things.

API solutions typically consist of two types of components. One type of
component exposes the API and another type of component consumes the APIs.
The exposed APIs reside server-side, e.g. in the cloud or on premise. The
clients are the API-consuming components. They are typically apps for mobile
phones, web browsers or embedded devices for the internet of things. The
clients use APIs for connecting to centrally deployed data sources or services
in company backends.

Types of API Solutions

A number of solutions use APIs as their backbone. In the following we study
some typical example of solutions that are built with APIs.

M obile Solutions

The number of mobile and tablet devices has outgrown the number of
stationary computers. Mobile apps are different than traditional desktop
applications, since most mobile apps are neither autonomous nor self-
sufficient. Apps need to connect to the servers on the internet to be used at all
or at least to be used to their full potential.

The mobile app itself is for the most part just a pretty frontend and user
interface. Some business logic will be executed on the mobile, but most heavy
processing will happen on servers in the cloud or in the remote data center of

the company. The functionality hosted on these servers can be reached via
APIs. Also, the data is located on the server-side backends and pulled via API
calls. The user data that is gathered by the sensors of the mobile device and the
data that is entered by the user is usually sent to APIs on the server, which hand
the data to services or directly to data bases.

The data delivered by APIs needs to be lightweight, and partitioned. This
ensures that the API can be consumed by devices with limited processing
power and limited internet connection bandwidth.

Who provides the APIs used in mobile apps? Some APIs, namely the APIs
used for the core functionality of the mobile app, are typically also provided
by the providers of mobile apps. More generic APIs are typically provided by
third party API providers.

Cloud Solutions

SaaS cloud solutions typically consist of a web application and APIs. The web
application is visible for the consumers. Under the hood, cloud solutions
usually offer an API as well, however, the API typically remains under the
surface. This API can be used for connecting the cloud application with other
cloud applications to realize automation or for connecting the cloud solution
with mobile apps and desktop software. Dropbox is an example for this type of
cloud solution. The API of this cloud solution allows many third party
applications to connect to Dropbox, including synchronization tools for mobile
and desktop.

Web Solutions

Web applications display dynamic web pages. Based on the users' requests, the
web pages are created on the fly with the data available from the backend. The
data displayed on the web pages can be served by APIs. The web application
pulls the raw data from APIs, processes the data and displays it on HTML
pages.

An e-commerce web application for example displays products on a web site
based on the customer's search criteria. The product data is served by the
product API, which fetches the product data from a database and returns
relevant fields in the form of a JSON structure. The web application interprets
the JSON structure and transforms it into an HTML page.

What is the advantage of this architecture? The API can be accessible to other
clients, such as a mobile app for integration with a partner, or for a third party
app. The web application is just another client of the API. Only one interface
needs to be maintained. When appropriate security mechanisms are in place, it
can be used by everyone, internally in the organization and externally. It can
even be made available to partners or third party developers. A precondition
for such an approach is a good security architecture.

Integration Solutions

Businesses are run by software. Industrial production processes are controlled
by software. Machines, cars and many consumer products contain software. By
integrating businesses, machines or products with other systems, they can
become much more powerful and practical. But how does this integration
work?

APIs provide the capabilities, which are essential for connecting, extending
and integrating software. By integrating software, APIs connect businesses
with other businesses. They are used in business to business integration
solutions. The business of an enterprise can be expanded by linking the
business to partners up and down the value chain. Since businesses are run by
IT, the businesses can be better linked by integrating the IT systems of a
business up and down the value chain to the IT systems of other businesses,
partners, employees and of course to customers.

Integration does not only make sense in a business to business context, often the
integration of internal systems, the various systems of an organization, is done
prior to any external integration.

M ulti-Channel Solutions

Today, e-commerce systems offer customers to shop on several platforms: on
the mobile, on the web or on the tablet. However, when customers want to
switch from one device to the next one, their shopping cart does not follow
along. This is inconvenient for the end-user and may lead to a lost sales
opportunity for the shop owner.

To improve the shopping experience, the same data and user actions need to be
available on all of the user's devices, even though they are built on different
hardware, run different operating systems, and different apps. For the user, it
should be a seamless switch from one device to the next one. Omni-channel
solutions or multi-channel solutions deliver exactly this. No matter which
channel is used by the customers, they get a consistent experience on all their
devices and can easily switch between devices.

The architecture ensures that data is stored independently of a particular
device or app. Relevant data is stored on a server and made accessible by an
API. All devices and apps can connect to the same API, which not only keeps
the data but also the "state" information in one single, central location. Since
APIs are loosely coupled to their client and do not require complicated,
proprietary infrastructure on the side of the client, they are ideally suited. In
fact, APIs only require the lowest common denominator of all platforms -
HTTP access.

Smart TV Solutions

TV is still the most popular medium. Thus it allows content providers and
advertisers to reach a large number of people. However, it only allows for
one-way communication, the back-channel is missing. This means that the TV
company can send its content, but the audience cannot interact, reply or

provide feedback in any way.

Smart TV provides a solution. It does not just offer more TV channels, but
provides more capabilities for interaction. The back channel for the TV is
provided by apps running on the Smart TV. These apps can perform API calls
to provide feedback of the audience.

Internet of Things

The internet of things is made up of physical devices with an internet
connection. The devices are controlled by software via their actors or the
devices can collect data via their sensors. So the device itself does not need to
be "smart", however, it can behave like a smart device. The device connects to
smart functions, which are exposed on the internet via APIs. Examples of such
API solutions include smart wearables, smart cars, smart homes or smart
cities.

Several APIs may be involved in an internet of things solution. Some APIs are
deployed in the cloud and receive the data, which was collected by the sensors
of the physical device. Other APIs are realized on the device itself and expose
the actors of the device. Software, which is not necessarily running on the
device itself can deliver the smart functions and implement the "brain". It
analyzes the collected sensor data and sends appropriate commands to the
actors on the device via API calls. APIs are the glue. They connect smart
functions via the internet with the "things".

In summary, APIs have two functions in the internet of things. APIs are the
"call center", which receives all the calls from the devices for leaving their
sensor data. APIs are also the "remote control" for steering the devices from a
distance.

Stakeholders in API Solutions

There are three main groups of stakeholders for API solutions: API providers
develop, design, deploy and manage APIs. API consumers build API solutions,
API clients, apps or smart devices using APIs. End users buy and use apps.
Note, that the end users do not call the API directly. Instead, end users call the
API indirectly via the app.

API Providers

API providers build and expose APIs. They need to know how APIs are
designed, built and operated. Despite originating from many diverse industries
and forming a quite diverse group, API providers share the interest in the topic
API architecture. The approach to API architecture may vary, not depending on
the industry, but depending on the legacy of the enterprise.

There are API providers, which are born as API providers. Examples are
Facebook and Twitter. Any functionality these young companies would like to

expose, they expose in the form of an API. These companies can start building
APIs on the green field. Any new system they build will have APIs from the
beginning. They do not have any legacy systems, yet, which need to be
integrated.

There are also API providers, which start out as traditional enterprises and
grow into the API provider role. They have to deal with many legacy systems,
which already cover the core functionality of the business. However, these
systems are complicated, not user-friendly and cannot be exposed to anyone
outside the enterprise. However, the API does not need to implement the
required business functionality, since it is already realized by the existing IT
systems. Implementing the same business functionality by building completely
new APIs might seem like a waste. Instead, the API connects to the backend
systems on the one side and to the API consumers on the other side. The API
hides the complicated, not user-friendly interface of the legacy system, but at
the same time it uses their functionality.

The business of API providers is the development of APIs for consumers. API
providers usually cannot influence the API solutions, which are built with their
APIs, but they need to know and understand the needs of the API consumers to
be able to offer APIs, which are useful for the consumers. API providers
define the API portfolio, roadmap and product model.

For some API providers, APIs are their innovation lab, which they can use
themselves to build new app prototypes quickly. APIs are often seen as an
innovative playground, where it is quick and easy to build apps based on core
data and core services of the enterprise. APIs are seen as a possibilities for
large enterprises to stay innovative.

It is the responsibility of the API provider to decide which functionality should
be exposed by an API. Often, the wish is to expose as much functionality as
possible, but resource constraints require that the efforts are in some way
prioritized. Which API should be realized first? In a solution driven approach,
only those APIs are built, which are required by the API consumers to be able
to realize their apps and solutions. The API consumers steer the API
development. In a top-down approach on the other hand the API provider
defines the important APIs from an internal perspective, e.g. from a reusability
perspective and thus steers the development of APIs.

API Consumers

API consumers build solutions with the APIs, such as web applications, cloud
services, mobile apps or smart devices for the internet of things. To become
API consumers, the developers of the API consumer need to understand how to
call the API and build an API client, which is the component of the API
solution that interacts directly with the API. Sometimes, API consumers need
to register with the API provider to obtain credentials for accessing the API
and its documentation. In addition, API consumers might need to buy a rate
plan for accessing monetized APIs.

API consumers are interested in the development of API clients, which may be
realized in the form of mobile apps, web applications or cloud services. API
consumers are primarily concerned with a great end user experience.

API providers should always strive for becoming API consumers of their own
APIs. Building a demo app will quickly expose any challenges that other API
consumers have. It is a classic variant of the strategy "Eat your own dog food".

End Users

The end user does not call the API directly. Instead, the end user uses the app
or web site that was built by the API consumer. This app or website calls the
API in the background. However, this happens under the hood and the customer
will not notice the API call. The end users will usually not care about the API,
see the API, or know that an API is a part of the solution in the first place.

API-related Design Decisions

In the following, a couple of architectural design decisions are discussed,
which need to be solved on the level of the solution architecture. They refer to
the foundations of the architecture, the allocation of the functionality to either
client or server, reusing or building an API or choosing a third party API.

What do all types of API solutions have in common?

API solutions can be built for very diverse use cases. What do all types of API
solutions have in common? API solutions are distributed systems, consisting of
client and server components.

API clients may be mobile apps, cloud apps or web applications. These clients
provide the user interface for user engagement.

APIs take on the role of the server in the distributed system and thus operate
under the hood, invisible for the end users. APIs provide data and services,
which are relevant in the context of the solution. For example, they encapsulate
the business logic and the storage systems. The API is the entry point to the
functionality offered by the enterprise. It is the first and in fact the only system
that an API consumer would contact directly.

Functionality in the client or in the API?

API clients may be realized in the form of mobile apps, web applications or
cloud services. Despite great app development frameworks, not all
functionality can be realized inside the app. Typical functionality that cannot be
realized inside the app includes:

Heavy computation or number crunching
Persistent storage of data
Storage across several devices for realizing omni-channel experiences

Storage of sensitive data
Access to real time data

Since the above functionality cannot be provided by the client, it is typically
realized on the server and exposed in the form of an API. The client merely
connects to the API.

Use existing API or build a new API?

The design of the API client includes the choice of the API. The API consumer
has the choice to use an existing API (and pay for its use) or to build a new
API. When given the choice, API consumers typically prefer to just use an API
that has already been developed and tested. This allows API consumers to
integrate the API quickly and focus on adding value on top with their app.

If the required API already exists, the API client can be built quickly. The API
consumer needs to register the new client with the API provider to receive
credential, set up the payment for the usage of the API and integrate the API
with the client. The important steps for choosing a third party API are outlined
in the next section.

More often, however, none of the existing APIs fits the requirements exactly. A
completely new API may need to be developed or it may be possible to adapt
an existing API. The API may be developed by a third party API provider or
by an API consumer. If the API is developed by the API consumer, the API
consumer also becomes an API provider. The important steps for building
APIs are described in the rest of the book.

How to choose a third party API?

When integrating a third party API, the API consumer needs to be able to (1)
find this API, (2) learn about the API, (3) test the API and (4) use the API. For
a quick integration it is essential, that these four steps are as smooth as
possible for the API consumer.

Ste p 1: Find the API

There is a global market for third party APIs. The API consumer can choose
from the offers on this market. APIs are typically sold as services, i.e. the API
consumer pays for the usage of the API. Different models may be available to
pay for the usage, i.e. by the number of calls, number of days, by the bandwidth
and many other options.

Ste p 2: Le arn about the API

APIs are essential components of modern apps. The app might even stop
working if the API stops working. This is why the API consumer needs to trust
the API provider. API consumers may worry about the API provider not being
around any longer, the API provider switching off the API or changing the API.

This is why API consumers are interested in the stability and longevity of the
API. When choosing an API, consumers should evaluate both the stability of
the API provider as a company and the stability of the API from a technical
perspective.

A hint for the stability of the API provider is a sound business model.
Providing APIs needs to make business sense for the provider. This is why
paid APIs are typically considered "safer" and more stable. Keeping alive
paid APIs is in the self-interest of the API provider, so API provider and API
consumer are aligned.

A hint for the stability of the API is provided by the history of the API. Has the
API been changed? Are new versions deployed? Are old versions still
supported? Is the phase-out at the end of the API life cycle described in the
terms of service?

Ste p 3: Te st the API

API consumers typically test the API. It needs to satisfy both runtime and
development aspects. Runtime aspects comprise the functional requirements
and the non-functional requirements of the API, such as stability, longevity,
performance and security. The development aspects comprise the relationship
between API provider and the developers of the API consumer. The
developers of the API consumer are the only people who interact with the API
directly while building their app. Thus API consumers choose APIs with a
great community, great support, great documentation and tools that will make
client development and operation as smooth and simple as possible.

Ideally, the engagement platform makes it easy to test the API via an interactive
documentation.

Ste p 4: Use the API

To enable new consumers to use the API, documentation and credentials should
to be easily available. Engagement platforms typically enable this, by
generated (potentially interactive) documentation and a self-service interface
for obtaining credentials, such as client IDs or API keys.

API Platform Architecture
API platforms are used by API providers to realize new APIs efficiently.

New APIs are typically not built from scratch but from the building blocks
provided by an API platform. This platform can be anything from a simple JEE
platform to a fully-featured API management platform. A platform allows for
reuse on several levels and for the efficient development of APIs.

In this chapter we answer typical questions about API platforms, such as: Why
do we need an API platform? What is an API platform? Which capabilities
does and API platform have? How is an API platform organized? What is the
architecture of an API platform? And how does the API platform fit into the
surrounding technical architecture of the enterprise?

Overview

Why do we need API platforms? It is certainly technically feasible to build
APIs without any platform or framework. But, why would you? For a moment,
let's think about databases, which provide us a platform for building
applications. You could certainly build your application without a database
and write your own data storage library. But we typically do not do that. We
use an existing database as a platform. And this is best practice for good
reasons. It allows us to focus on building application that serve the business
case, because we can reuse existing, proven components and build
applications quicker. The same argumentation applies for API platforms:

API platforms allow us to focus on building APIs that consumers love, since
we can reuse existing, proven API building blocks and build APIs quicker.

So what is an API platform? An API platform typically consists of at least the
following three platform components:

API Development Platform: This platform enables API providers to
develop APIs quickly and with high quality. It offers API building blocks,
which are proven, reusable and configurable. It also offers tools for
development and design of APIs.
API Runtime Platform: This platform primarily executes the APIs. It
serves API responses for incoming API requests of the consumers with
favorable non-functional properties, such as high throughput and low
latency.
API Engagement Platform: This platform allows API providers to manage
their interaction with API consumers. It offers API documentation,
credentials and rate plans for API consumers. For API providers it offers
product management and configuration capabilities.

In the following sections we show the why and what of each of these platform
components to answer the question "Which capabilities does each API
platform component have?"

API Development Platform

The API development platform offers a toolbox for API design and
development. The toolbox contains API building blocks, which are proven,
reusable and configurable. APIs are constructed by composing these building
blocks. There is no need to reinvent the wheel for the development of each
new API. The API development platform also offers an integrated engineering
environment with tools for the development and design of APIs.

The toolbox offered by the development platform consists of:

Library of API building blocks.
Language for implementing APIs.
IDE for API development with editor, debugger and deployment tools.
Language for designing APIs.
Design tool for creating API interface designs
Tool for generating documentation and code skeletons based on the
design.

The API development platform is targeted at the API developers, who work
for the API provider. This platform supports the developers and enables them
to develop APIs quickly and with high quality.

Library of API Building Blocks

When developing APIs, certain functionality is needed over and over again. It
is extremely helpful to have this functionality available in a shared library of
building blocks. The building blocks can be reused and do not need to be
developed over and over whenever the functionality is needed. The building
blocks are tested and proven in practice, so bugs are extremely seldom. The
building blocks are configurable and can be adapted for many purposes. The
building blocks are composable, i.e. an API can be built from a collection of
properly configured building blocks.

The building blocks offered by the development platform span the following
features at a minimum:

Processing of HTTP requests and HTTP responses, including header

parameters, query parameters, URI processing, HTTP status code, HTTP
methods
Security: threat protection, IP-based access limitation, location-based
access limitation, time-based access limitation
Frontend authentication and authorization with OAuth, Basic
	
Authorization, API key
	
Backend authentication and authorization with SAML, LDAP, XACML
Frontend protocols: REST, SOAP, XML-RPC, JSON-RPC, WebSockets,
XMPP, Push Notifications
Backend protocols: REST, SOAP, XML-RPC, JSON-RPC, JMS, RMI,
Cloud Services
Protocol mediation: SOAP to REST, REST to SOAP
Data format transformation: XML to JSON, JSON to XML
Structural transformation: XSLT, XPath, JSONPath
Data integrity and protection: encryption and signing
Routing to one or multiple backends
Aggregation and orchestration of multiple APIs and/or multiple backend
services
Throttling to protect your backends: rate limitation and throughput
limitation
Throttling to protect the API platform: rate limitation and throughput
limitation
Load balancing for incoming requests to the API platform and outgoing
requests to the backends
Cache for incoming requests to the API platform and outgoing requests to
the backends
Hooks for logging
Hooks for analytics
Monetization capabilities and enforcement

Language for Implementing APIs

The building blocks presented in the previous section need to be composed to
form an API. Typically, a language is used for composing the building blocks.
This language can be either a general purpose programming language or a
domain-specific API development language.

General purpose programming languages such as Java or JavaScript have the
advantage of wide-spread use and many generic supporting tools. The
efficiency of development with general purpose languages can be improved by
frameworks such as Node.js or Express.js for JavaScript and JAX-RS, Jersey,
Restlet or Spring for Java.

API development languages are domain-specific configuration languages. They
intentionally limit the expressibility. API development languages only offer a
handful of language constructs, but all of them are relevant for API
development. This intentional and focused limitation is an advantage, since it
is easier to learn them, easier to understand them and easier to validate them to
discover erroneous or missing configurations. They offer the advantage that
APIs can be built by pure configuration, resulting in much smaller, more

http:Express.js

compact and more understandable implementations. API development
languages usually offer their own integrated development environment with
editor, compiler, debugger and deployment capabilities. DSLs are typically
linked with a specific API development platform and are product-specific.

Besides the technical reasons for general purpose languages or domain
specific languages, the existing skill set of your developers needs to be
considered. It is usually more efficient to write APIs in a language that the API
developers are familiar with and already productive in.

Language for Designing APIs

Not only the implementation of the API needs to be described, but also the
design of the API. This is why API development platforms provide two types
of languages: There is a low-level API implementation language and a high-
level API description language. The higher-level language is used for
designing APIs and is also called API description language. It is used to
express the "what" of APIs. The lower-level language, the API implementation
language, is used for implementing APIs and for expressing the "how".

API platforms provide not only the language, but also design tools for creating
API interface designs, tools for generating documentation from the API
description and tools for generating implementations. If an implementation can
be generated from the design, the generated implementations needs to fit with
the strategically chosen language for implementation. In a later chapter on API
methodology the use of API descriptions in various stages along the
development process is detailed.

An API description language is a domain-specific language for expressing API
design. The well-defined semantics of the language and the tooling ecosystem
are the main advantages of API description languages compared to generic
modeling language, such as UML (Unified Modeling Language). In a separate
chapter on API description languages we study the capabilities of these
languages in depth.

API Runtime Platform

The API runtime platform primarily executes the APIs. It enables the APIs to
accept incoming requests from API consumers and to serve responses. The
foundation of an API runtime platform is an HTTP server, which allows
exposing services via HTTP.

The API runtime platform is responsible for favorable non-functional
properties, such as high stability, high throughput, high availability and high
security. To meet the non-functional properties, the platform offers capabilities
for load balancing, connection pooling and caching. The runtime platform
should also offer capabilities for monitoring, logging and analytics for
checking if the desired non-functional properties are met.

The API runtime platform is also responsible for providing capabilities for the
smooth deployment of new and maintenance of existing APIs. It also needs
capabilities for credential and configuration management. These features help
to keep track of the credentials and configurations for multiple environments
and for multiple backend systems.

The runtime infrastructure provides capabilities for:

Load balancing, connection pooling and caching
Monitoring, logging and analytics
Deployment and maintenance
Credential and configuration management

API Engagement Platform

An API engagement platform is used by the API provider to interact with its
community of API consumers. The platform offers API providers the
capabilities of product management and configuration. API providers use the
following capabilities of the API engagement platform:

API management: configuration and reconfiguration of existing APIs
without the need for deployment of the API
API discovery: a mechanism for clients to obtain information about the
APIs.
Consumer onboarding (Client ID/App Key generation, Interactive API
console)
Community management (Blogs, Forums, Social features etc.)
Documentation (Ideally an interactive documentation, which was
generated from the API description)
Version management
Management of monetization and service level agreements (SLA)

For API consumers, the API engagement platform is the information hub for
inspecting the API portfolio, accessing specific API documentation, managing
credentials and managing rate plans. From the perspective of the API
consumers, the platform offers:

An overview of the API portfolio
A source of inspiration for API solutions
Documentation of APIs
Possibility to try APIs interactively
Example source code for integration
Self service to get access to APIs (credentials and rate plans)
Service announcements
Client tooling, such as code generators for clients

API Platform Configurations and Interactions

Different Environments

The components of the API platform should be available in different
environments. Especially the runtime platform and the engagement platform
should be available in different environments. Only one instance of the
development platform is needed, since it can be shared among all
environments.

Usually, the APIs are not only deployed once, they need to be deployed on
different stages, which are sometimes also called environments. Each of the
stages has a specific purpose and is separated from the other stages to isolate
potential errors to a single stage. In each of the stages the deployed APIs are
tested and validated.

Typically we find a subset of the following stages, ordered by increasing
maturity:

Sandbox or Simulation: Used for playing with interface design, provide
mocks or simulation of an API, allow interaction with consumers (e.g.
mobile app developers)
Development: Used for development, which will eventually go to
production
Continuous Integration: Used for automated testing of the latest version. It
is intended to provide feedback on the latest development version with
short turnaround times.
Testing: Used for manual black box testing and integration testing.
Pre-Production: Used as a practice for production and for acceptance
testing.
Production: Used as a real system for consumers.

The API platform and the surrounding systems should have a very similar
setup. Ideally, there is a smooth migration of the API and its configuration from
one stage to the next, after all the tests in the previous stage have been
completed. In addition, there should be a dashboard, which shows how the API
matures from one stage to the next.

API Platform Deployment M odels

The API platform may be deployed on premise or in the cloud.

Most API platforms are on premise solutions, since the required backend
systems are also on premise. For security reasons the backend systems should
not be available via the internet. The API layer is an additional protection and
security layer for the backend systems.

API platforms, which are available in the cloud, are typically elastic and scale
well. API platforms in the cloud make sense, if they do not need to connect to
secured backend systems in a private network. This is for example the case, if
the backends of the APIs are publicly available services or APIs on other
cloud systems.

Interactions between the Platforms

In the previous section we have introduced the purpose, structure and behavior
of the three API platform components. These three components can be used
separately. However, there are some dependencies between the platform
components. We study the relations between these components and answer the
following questions in this section: How is an API platform organized? How
do the platform components relate?

De sign and De ve lopme nt

Design and development activity is only performed on the development
platform. It does not affect any other platform.

De ployme nt

When the development of an API proxy is finished, it is ready for deployment.
Deployment transfers the API proxy (in a compiled or interpretable format)
from the development platform to the runtime platform. Configurations and
credentials need to be available on the runtime platform. All the building block
libraries and external dependencies are expected to be available on the
runtime platform. Note, that the API proxy is not available for consumers
directly after the initial deployment.

Publishing

An API proxy that has been deployed for the first time, needs to be published
on the engagement platform. Only published API proxies are available on the
engagement platform. Once published, the API is listed in the portfolio of the
engagement platform, its documentation is generated from the API description,
overall monitoring and analytics are started for the API. During publishing the
authentication and authorization parameters for the API proxy are configured,
so the API proxy becomes properly secured, can be monitored and monetized
on a per consumer basis.

Surrounding Systems

The API platform is not an isolated system, but it needs to be integrated into
the existing architecture of the enterprise. In this chapter we study the
interfaces between the API platform and other architectural building blocks of

the technical architecture.

The size and complexity of the architecture surrounding the API platform
typically depend on the size of the company. Large enterprises have many
legacy systems. They have grown their architecture organically and their
architecture is full of special cases. The technical architecture of an enterprise
is complex and thus the API platform becomes complex, requiring many and
diverse interfaces to other building blocks. Small startups typically have no
legacy systems and can form their architecture around the API platform. Some
of the building blocks presented in the following may not even exist in a startup
since they are not necessary, leading to a simpler technical architecture.

API clients are outside the scope of the surrounding systems of the API
platform. Consumers develop clients to access the APIs. Clients can be mobile
apps, web applications, cloud services or embedded devices for the internet of
things.

The surrounding systems are partly before the API platform, i.e. between the
clients and the API platform and partly they are hidden behind the API
platform. Before the API platform, there are typically firewalls to improve the
security and load balancers to improve the performance. Behind the API
platform there are IAM systems for managing identity information and backend
systems for providing the core functionality of the enterprise.

Load Balancers and Firewalls

Security devices are usually placed between the internet and the API platform.
IP level filtering (ISO/OSI level 3) is usually performed by a separate security
device, while application level filtering (ISO/OSI level 7) is performed by the

API runtime platform.

Load balancers are usually placed between the API platform and the internet.
Some API platforms may offer load balancing capabilities out of the box,
others may rely on external components.They are used to route the traffic from
the internet to one of several nodes of an API platform running as a cluster. The
load balancer spreads the requests equally among the nodes.

Another place for load balancers is between the API platform and the backend
system. The API platform sends all requests for a specific backend system to a
load balancer, which balances the requests over several instances of the
backend system.

Identity and Access M anagement Infrastructure

In its position on the fringes of the enterprise IT system, APIs need to
authenticate and authorize the users. The API platform provides building
blocks for authentication and authorization.

To be able to offer OAuth, OpenID Connect and social login, an OAuth
provider and an OpenID Connect Provider are typically part of the runtime
platform. At the same time, the existing identity and access management
infrastructure needs to be reused as much as possible. The API platform needs
to connect to existing identity stores such as LDAP or Active Directory and to
existing authentication and authorization systems.

Which components of the platform need identity information? The development
platform needs the identities of the developers. The engagement platform needs
the identities of consumers. The runtime platform needs the identities of
consumers, and potentially also end users.

Existing Functionality in Backends

APIs typically do not implement the core business logic of the enterprise, nor
do they store customer or business data. However, APIs need to have access to
this data and the business services.

The data and services typically reside in backend systems. Backend systems
form the heart of the enterprise. Due to their vital role, backends need to be
protected, both from a security perspective and from a performance &
availability perspective. It is the responsibility of the API platform to secure
the access to the backend system and to limit the load on the backends to a
healthy and manageable level.

Backend systems typically do not provide the data and services in an easily
digestible form. Data and services that are offered by backend systems are
typically big, ugly, complicated, not easily digestible and simply not customer-
friendly. The backends do contain valuable information, but the relevant
information is typically buried deep inside the data, and relevant functionality
is spread out over several services on different systems. It is the responsibility
of the API to aggregate, filter and process the data into an easily-consumable
form.

Enterprises typically have a large set of backend systems using a variety of
technologies. Backends may be databases, applications, enterprise service
buses or web services using SOAP interfaces, REST interfaces, or message
queues. The data is available in XML or proprietary formats. It is the
responsibility of the API to offer the data and services in a homogeneous,
modern protocol and data format.

Credentials, URIs and further connection details for the different deployment
environments need to be available in the configuration management database of
the runtime platform. In addition, IP-level firewall rules need to allow the
connections from the runtime platform to the respective backends.

New Functionality

API proxies only expose existing functionality and protect it. New functionality
should not be realized on the API platform directly. Instead, it should be
realized on a backend system. However, the technology and data format for
newly constructed backend systems can already conform to the requirements of
the externally facing API proxy.

Enterprise Service Buses and SOA Platforms

Many enterprises already have a SOA platform such as an Enterprise Service
Bus. You might ask yourself why you cannot use a SOA platform for exposing
APIs. Indeed there are similarities, especially when looking some of the basic
functionality of the products, such as proxies, message transformation and
security. However, there are also important differences, which might render
SOA platforms insufficient or at least inconvenient for exposing APIs. In this
section we will explain the differences between the SOA approach and the API
approach.

SOA solutions are designed and built by the service provider. The consumers
are typically in the same organization. The management of the
organization orders all departments of the organization to consume the newly

created service. Due to this organizational structure, the opinion of the service
consumer about the service does not matter so much in SOA. The
organizational structure ensures, that for every service built, there is a
guaranteed consumer in a SOA environment.

For APIs, the situation is different. The consumers are outside the company of
the API provider. There is no instance that can dictate the usage of the API.
API consumers only choose to use the API, if it makes sense for them. API
consumers can typically choose from a set of APIs that offer the same
functionality. If the API is in some way difficult to consume, they can just move
on to the next API offered by a different API provider. There is no guaranteed
consumer for any given API.

The well-known SOA principles, however, still apply to APIs. These
principles are service orientation, reuse, separation of concerns and loose
coupling. SOA promised external integration outside the organization, but this
aspect was not widely adopted. APIs are another attempt for supporting
external integration, using a different technological stack. APIs are simply a
specialized version of web services, and provide similar technical benefits.
Today, there is a place for both SOA services and APIs. A SOA service is
preferred, when sharing business tasks within the organization. An API is
preferred for sharing a business task with several consumers outside the
organization.

It might be tempting to open up some of the the internal SOA services to
partners and to expose internal SOA services in the form of APIs. However,
internal services are often not very consumer-friendly. They are usually very
complex and include a lot of details, which are irrelevant for the external
consumer. This is why, internal services need to be redesigned, when they can
are exposed via APIs, so they become what the customers really want.

API Portfolio Architecture
Usually, an organization does not only have a single API proxy, but several
API proxies. Together, all these API proxies form the API portfolio of the
organization. The API portfolio should, however, be more than a haphazard
collection of whatever APIs were found in the organization. The API portfolio
should be a consciously designed product and all the APIs in the portfolio need
to be consistent with each other, reusable, discoverable and customizable.

Requirements

API portfolio design is a concern for different API stakeholders. Both API
consumers and API providers have significant advantages from a properly
designed API portfolio and both parties formulate requirements for the API
portfolio regarding consistency, reuse, customization, discoverability and
longevity.

Consistency

An API solution, such as a mobile app, may use several API proxies from the
portfolio and the output of one API is the input to the next API.

From the API consumer's perspective, it is important that the APIs harmonize
well when used together and are consistent with each other. Consistency is
required regarding data structures, representations, URIs, error messages and
the behavior of the APIs. API consumers find it easier to learn about and work
with an API, if it behaves similar to the last one and delivers the similar error
messages.

From an API provider's perspective, managing a consistent portfolio is easier
than managing a portfolio without structure. A consistent portfolio contains
many commonalities among the APIs. These commonalities can be factored
out, shared and reused. In the end, this reuse leads to a speed-up in the
development. By reusing common elements, the wheel is not reinvented each
time a new API is built. Instead a common library of patterns and know-how is
shared and reused. This leads to the next step: reuse of implementations and
designs among APIs.

Reuse

Developing a new API is a project that binds resources of the API provider.
Such a project should only be started if the resulting API can likely be used
and reused by many apps and in many API solutions. This is why API portfolio
design needs to produce reusable APIs. Reuse can be realized in several ways:
reuse of the API by several apps, reuse of the API by multiple APIs, or reuse
of parts of the API.

APIs should not be developed for specific consumers -- APIs should always

be used by several consumers, solutions or projects. APIs can be used by apps,
but they can also be used by other APIs. In this case, APIs become the building
blocks for bigger APIs and are thus reused.

If not the complete API can be reused, at least a part of the API could be
reused. Common functionality can be factored out into shared libraries and the
shared libraries are reused. The reuse and the consistency requirement go hand
in hand and lead to the same results.

Customization

A successful API portfolio addresses and satisfies the needs of its API
consumers. When an API portfolio is newly designed or extended, the
consumers' needs and expectations need to be considered. But what happens if
the consumers are not a homogeneous group and they have little in common?
What if each consumer has different requirements for the APIs?

In this case, the one size fits all approach for APIs does not provide adequate
results. The proposed alternative is a customization approach, which ensures
that each consumer can get APIs which match the consumer's individual need.

But ... in the above section on reuse we claimed that no APIs should be
developed for a specific API consumers and in this section we claim that APIs
should be customized for each consumer. A contradiction? No, we claim that
both can be realized at the same time.

Discoverability

To expand the usage of APIs, it should be easy for an API consumer to find and
discover all APIs in the API portfolio. API portfolio design needs to ensure
that APIs can be found and all the information that is necessary for the proper
usage is available.

Longevity

Longevity means that important aspects of a software do not change and stay
stable for a long time. This might be a surprising requirement in an
environment, where everything is agile and the mantra is "release early and
release often". What needs to stay stable is the signature of the API, the client
facing interface. The reason for this requirement is that typically many
consumers rely on an API and changes in the signature would break the
consumers. This is especially the case when consumers are not pure software,
but are e.g. IoT devices. These devices often hardcode URLs and parameters.
In addition these devices often have no software-update functionality. This is
not because of bad engineering practice, but rather because of the stringent
resource limitations of the devices. In this chapter we study techniques for
obtaining longevity, namely change management and versioning approaches.

Governance

We have identified consistency, reuse, customization and discoverability as the
main requirements for API portfolio design. In the remainder of this chapter we
provide solution patterns for these requirements. These requirements for the
API portfolio, which were identified in the last section, scream for governance
processes.

An API initiative is often regarded as the innovation lab of an enterprise. To
fulfill this vision, the API portfolio should inspire, spark creativity and enable
the enterprise to build innovative apps with little effort. The idea of
governance for APIs and the rigid rules, which are associated with governance
processes, might seem to be in conflict with the idea of APIs as a lightweight
innovation lab. However, governance for APIs has its place in the API
portfolio management. If done right, governance does not need to create heavy
processes that suppress innovation. Instead, API governance of the API
portfolio is realized in a lean and lightweight fashion.

To manage the conflicting requirements of governance and agility, the portfolio
may actually be split into two separate API portfolios: One portfolio is
dedicated to innovative and experimental APIs, which are not in productive
use, yet. This portfolio can be developed without any restricting governance
rules. Another portfolio is dedicated to stable, productive APIs, which are
offered to external API consumers. Only this last portfolio of productive APIs
is required to follow a lightweight governance process.

Consistency

Consistency may focus on internal development guidelines, which are only
relevant for the developers of the API providers. On the other side,
consistency may be focused around the externally visible interface definitions,
which are relevant for API consumers. No matter which scope is chosen for
the consistency, a set of rules are defined that can be used for consistency
checks. Each enterprise may implement its own set of consistency rules. Such
rules make it easy to ensure consistency among all the APIs in the portfolio,
compliance with company standards, and the appropriate level of protection,
security and privacy.

Consistency rules may include some of the following points:

The URI for the APIs should follow a common structure and should be
intuitive. This includes the use of path parameters and query parameters.
Resources and representations should follow a common structure. If the
representations of different APIs share data fields, the names of the data
fields and the format in which the data is presented should be consistent
across all APIs in the portfolio.
Common patterns should be factored out and reused consistently by all
APIs in the portfolio.
Input validation rules should be applied consistently across all APIs in
the portfolio.
The same selection of security mechanisms should be applied consistently

across all APIs in the portfolio. For the OAuth security mechanism, grant
types and scopes should be used consistently. Especially the naming and
the semantics of the scopes should be consistent.

More rules for API design and specifically RESTful API design are explained
in detail in the API University book on API Design [30].

Consistency Checks in Practice

When the consistency rules are defined, consistency checks can be realized as
either a manual or as an automated process. A lightweight consistency check
can be realized by setting up some manual quality checks or reviews
performed by colleagues. These reviews can be performed on the artifacts as
soon as the implementation is finished in the design and development process.

An alternative to manual checking is automated checking, which can be
executed periodically or event-triggered. These automated checks are based on
syntactic rules, which are typically much more restrictive and precise than the
rules used for manual checking. A complementary approach is the automated
code generation based on an API description. It helps developers to get started
with a code skeleton, which is conform to the API description. However, this
does not necessarily ensure that the implementation is still conform to the API
description at the end of the development phase. Mechanisms for ensuring
reuse and consistency are discussed in the sections on reuse and consistency,
respectively.

Reuse

To identify reuse potential within an API portfolio, system thinking is needed
rather than a one-off thought process. This can be achieved by first identifying
possible usage scenarios, which contain more than one API. Such usage
scenarios can exemplify the different ways in which APIs can be combined
with each other and how APIs need to be connected. This is more important
than defining a single API specification.

Reuse can be applied on different levels of granularity, depending on the
requirements. On whichever level reuse is applied, it contributes to the
consistency of the portfolio.

Reuse of API Features

On the first level, there are reusable building blocks, which are offered by the
development platform (see chapter on platform architecture). These building
blocks ensure e.g. HTTP and OAuth standard conformity. To form an API,
these building blocks can be configured and composed using an API
implementation language.

On the next level, there are reusable solution patterns, which can be realized as
compositions of building blocks. They can be offered in the form of provider-

specific libraries. Provider-specific libraries are typically used for ensuring
company-wide consistency. An example is API fault handling, which needs to
produce errors with specific error codes and error messages.

Reuse of Complete APIs

On a larger scale, complete APIs can be reused. In fact, all APIs should be
used by several API consumers and in different API solutions. APIs should not
be built for one consumer only. Apart from the reuse by consumers, APIs can
also be reused by other APIs. In this case, APIs become the building blocks for
new APIs. New APIs can be composed of reusable APIs by aggregating or
orchestrating them. Furthermore, these reusable APIs can be configured
according to the preferences of each API consumer.

If APIs are developed without portfolio design, multiple APIs are created with
roughly the same content for different projects, a lot of rework is done and
similar API proxies are built with a large engineering effort. A typical starting
point for organizations is a project based organization, that defines the need for
new APIs.

A goal of portfolio design is the definition of reusable APIs. To design APIs
for reuse, APIs are designed a bit more generic than the projects would
request. This is how APIs are made more generic, are only built once and can
then be reused. The benefits of such a solution are easier to maintenance, since
only one generic version has to be maintained. With this structured approach it
is much easier to create customized API versions by extended the generic
versions of the API.

Reusing own APIs

From an API consumer's perspective there are "own" APIs, and "third party"
APIs. Own APIs are developed by the same organization as the app; the API
consumer is also the API provider.

A typical pattern is an API calling another API on the same platform. This
pattern is applied for decorating the original API with an additional input
validation or with additional security checks. Composing APIs from other
APIs is studied in the chapter API portfolio architecture.

Depending on the capabilities of the platform, the request can be either routed
via the TCP stack, or via a local function call. If the request is routed via TCP,
it can either go to the local instance or via the load balancer on the next free
instance. If the API platform supports the optimization to route API calls via
local function calls, this alternative is recommended.

Reusing Third Party APIs

APIs, where the consumer is not the API provider are offered third parties.
While the actual API call might be similar for third party APIs and own APIs,

a couple of aspects might be different between the two.

Own APIs are typically used for exposing data from an internal backend
service. Alternatively an API may also be used for re-exposing third party
APIs. This makes sense, if the new API adds some value, or assimilates the
API to the rest of the portfolio. This can be achieved by adapting the data
formats used in the original APIs, unifying the security mechanisms used,
enriching the exposed data, aggregating the data from multiple APIs, filtering
the data or improving the availability & performance of the original API by
caching.

A critical aspect is the adaptation of the security mechanisms that is used for
protecting the API. Each organization offering a foreign API used in the same
app, potentially has its own OAuth provider and only accepts OAuth tokens
created by their own OAuth provider. This is why the app connecting to own
and foreign APIs or apps connecting to multiple foreign APIs needs to hold
multiple OAuth tokens.

A solution for this situation can be provided by changing all foreign APIs used
in an app to own APIs. This can be accomplished by creating forwarding API
proxies on the own API management platform. For each foreign API, there is a
proxy on the own platform. An advantage of this approach is the homogeneous
API portfolio and homogeneous security and access control from the
perspective of the API consumer. As a result, the same security and access
control applies to all APIs, whether the APIs are internal or external.

There may be legal restrictions for re-exposing third party APIs. To find out
whether it is allowed to reuse third party APIs, check their terms of service.

Customization

A successful API portfolio addresses and satisfies the needs of the API
consumers. The APIs and the API portfolio as a whole are built to satisfy
primarily the needs of the API consumers and only secondarily the needs of the
API provider. This however, assumes that the consumers and their needs are a
homogeneous group. Is this a realistic assumption? What if the consumers have
little in common and each consumer has different requirements for the APIs?
As it turns out, each consumer has different needs and requirements: for a
given API, some consumers might expect an elaborate response with many data
fields, while others need only one field and thus prefer a fast and lightweight
API that does not require additional processing time for the extra fields in the
response.

But ... In the above section on reuse we claimed that no APIs should be
developed for a specific API consumers and in this section, we claim that APIs
should be customized for each consumer. A contradiction? So how can the API
portfolio be consumer-centric if each and every consumer has different
expectations regarding the selection of APIs in the API portfolio and the
functionality of each API? Do we need to build separate APIs for the different
consumer needs? Would it be economical to build a separate API for each API

consumer?

In this case, the one size fits all approach for APIs is not adequate. But from an
economical perspective, it is equally inadequate to build individual APIs for
each consumer. One viable solution is a customization approach. By
customizing certain aspects of the API, each consumer can obtain APIs
matching their individual needs. But which aspects of the API should be
customized? Before we get into the details of the customization approach, we
first identify the most relevant aspects for customization.

APIs typically cover the following three aspects:

Data Formatting: APIs need to format the data, prune irrelevant or
unnecessary data elements, transform data structures and data values,
perform additional lookups to enrich the data, perform caching and
perform some fault tolerance mechanisms, such as retries for missing
elements.
Data Delivery: APIs need to serve the data using an appropriate protocol
and format the resources and representations appropriately.
Data Gathering: APIs need to collect the data they expose from one or
several backends.

Let us try to find out, which stakeholder is mostly concerned with which aspect
of APIs. If we knew which aspect is important for API consumers, we would
know that the aspects that need to be customized. All other aspects of the API
can remain static for all consumers.

Which stakeholder cares most about data gathering? The API consumers are
not concerned about data gathering, they just want to use the API. The API
provider, however is very interested in data gathering, which backends to use,
how they deliver the data and which firewalls need to be opened.

Which stakeholder cares most about data formatting and data delivery? The
API provider usually does not have any preferences regarding formatting or
protocol, as long as it is supported by the API platform. The API consumer,
however, is typically very interested in the format of the data, its structure and
the degree of detail of the delivered data.

Customization Approach

We now know that the API consumer is interested in data formatting and data
delivery. Different API consumers will need their data formatted and delivered
in different ways. Data formatting and data delivery need to be customizable.
Data gathering, however, is no concern for the API consumer. It requires only
one solution, which is used uniformly by all API consumers.

Since data formatting and data delivery are only interesting for API consumers
and data gathering is only interesting for the API provider, it makes sense to
separate these concerns into two separate APIs. One API, we call it the utility
API, only covers the data gathering aspect. The other API, we call it the

consumer API, performs only data delivery and data formatting according to
the customized needs of the consumer.

Consume r APIs: As their name suggests, consumer APIs can be
customized according to the needs of specific API consumers. Consumer
APIs use utility APIs. A consumer API orchestrates and filters the results
of a number of utility APIs. Utility APIs are the building blocks used for
composing consumer APIs. The consumer API can be customized,
especially the data formatting and data delivery aspects of the consumer
API.
Utility APIs: Utility APIs perform the data gathering from the backends.
Utility APIs are internal APIs, meaning that they cannot be called by
consumers directly. Instead, these APIs can only be called by consumer
APIs or by other utility APIs. Generic APIs are typical realized as utility
APIs.

It is not necessary to build an individual consumer API for each consumer.
Instead, one instance of a consumer API is sufficient, which can be customized
by a configuration. How are consumer APIs configured? The configuration of
the APIs is performed by the provider. For each API consumer a configuration
package is created. The configuration is saved on the API platform. The
configuration typically contains a filter specification for the API response, i.e.
which fields are included and a selection of the security mechanism used for a
specific consumer.

Summary

This approach ensures that APIs can be systematically customized and reused
and no individual and special versions of the APIs need to be built. Project-
specific variants of a consumer API can be created, by adapting the
configuration of the consumer API.

Discoverability

Discovery is about making it as easy as possible for the API consumer to find
the APIs in the portfolio. This topics has both technological aspects and a
marketing aspects. We mainly distinguish manual and automated discovery.
Manual discovery is the dominant strategy and automated discovery is mainly a
topic of the future.

M anual Discovery

The discovery of APIs is typically a manual process: API consumers may
discover APIs with the help of API catalogues and API yellow pages (such
as http://www.programmableweb.com). These catalogues sort APIs by topic,
for example payment, fitness or social. The catalogs offer search functionality,
so API consumers can quickly find the API for the challenges they are facing.
However, several APIs are typically listed for each topic or search word. The
API consumers may discover each API further based on the documentation on

http://www.programmableweb.com

the provider's engagement platform. Having a great API is usually not enough
to drive API uptake, it is however a precondition. Word of mouth works great
for APIs. But due to the typical manual discovery approach of consumers, it is
very important for API providers to list their APIs and especially new APIs in
API catalogs and to create an attractive engagement platform for them.

Automated Discovery

Besides manual discovery, there is the possibility for automated API
discovery. While manual discovery is performed by developers, automated
discovery is performed by software. For SOAP based services, automated
discovery has been standardized by WSDL and UDDI. The automated
discovery of APIs is not as institutionalized as for SOAP-based services, yet.
There is no agreed-upon format for meta-information about APIs. But with API
descriptions, one can obtain automated discovery functionality close to what is
offered by SOAP services. To realize automated discovery, the API
description of the API portfolio needs to be served to the consumer. The API
consumer needs to be able to parse and interpret the API description. From
there on, the consumer should have the information, which is necessary to use
the API. This idea can be implemented in various ways, since no standard has
been established, yet.

For example, there may be an API that serves the API descriptions for all APIs
in the portfolio. The URL of that API would be enough for the API consumer to
be able to discover the whole API portfolio.

Alternatively, each API might offer a resource, which serves the API
description. This approach is similar to the WSDL approach, where attaching
the query parameter ?wsdl serves a description of the service for discovery.

Another alternative approach is offered by HTTP. It offers a standardized
interface but only limited functionality. HTTP offers the OPTIONS method,
which enables discovery of the allowed HTTP methods on a per-resource
basis. However, it does not include discovery on an API or portfolio basis,
and it neither includes a description of the parameters nor a description of
request and response.

Change Management and Versioning

"Successful software always gets changed."
-- Frederick P. Brooks

Managing change in software systems is never easy, but it is especially
difficult to manage change in loosely-coupled, distributed systems, such as API
solutions. In loosely-coupled distributed systems not only the software
components themselves are distributed, but also the responsibilities of the
different components are distributed.

The Evolution Challenge

If the interface of the API changes, it is clear that the implementation of the API
needs to be adapted. It is also clear, that all clients (i.e. apps) relying on the
API need to be adapted accordingly. This is simple, if the interface provider is
in charge of the clients which have access to the interface. In case the interface
changes, the interface provider can trigger that the appropriate changes are
made in all clients. This is not the case for APIs.

APIs have published interfaces. Published interfaces are available for anyone
to read and study - not only for a selected few. (Even though an API is
published, it can be protected by a security mechanisms. Publication and
protection are not mutually exclusive.) The API provider has little control over
the implementations done by the consumers and the API provider might not
even know all consumers calling the API. The apps are developed by third
party developers. The API provider can thus not make appropriate changes in
all clients, if the interface changes [18]. If the interface of the API changes, it
is impossible for the API provider to change all the apps consuming the API,
just as it is impractical to force all consumers to adapt or update their apps,
just because the API changed. Consumers are often unwilling or uninterested in
dealing with API changes and will quickly abandon APIs that force them to
rewrite their app.

Why does the Evolution Challenge exist at all?

Different forces are at work when publishing interfaces: From an innovation
perspective or business perspective, there are forces to publish APIs as early
as possible. From an IT governance perspective, there are forces to publish
APIs as late as possible. In a compromise solution, APIs are published early,
but only to a small set of pilot API consumers. Changing the interface is
possible, since only the pilot consumers are affected. Pilot API consumers
have to expect API changes that will break their clients, but they will also have
early access to the API.

Classifying API Evolution

Are all changes to an API equally severe for the clients? In this section we
analyze potential changes and classify them according to their severity. We
classify changes into three types: backward compatible, forward compatible
and incompatible.

Breaking clients are an indicator for severe changes. Thus, the relevant
criterion for the severity of a change is this: Would the proposed change of the
API break the client?

Backward Compatible Change s

Backward compatibility is given, if an old client can interact with a new API.
Despite a change in the API, the API should stay backward compatible with

previous implementations. It becomes relevant, when a new API interacts with
an old client. Using the new API, the old client should be able to use all the
functionality that used to be offered by the old API. Reaching backwards
compatibility requires studying old versions of the API. Certain changes to the
API are prohibited for backward compatibility, but adding optional elements is
usually backward compatible. The following is a list of backward compatible
changes:

Adding query, header or form parameters, as long as they are optional.
Adding new fields in JSON or XML data structures, as long as they are
optional.
Adding endpoints, e.g. a new REST resource.
Adding operations to an existing endpoint, e.g. when using SOAP.
Adding optional fields to the request interfaces.
Changing mandatory fields to optional fields in an existing API.

Forward Compatible Change s

Forward compatibility is given, if a a new client can interact with an old API.
Despite the change in the client, the API should stay forward compatible with
previous implementations. The new client should be able to use all the
functionality of the old API. Forward compatibility is usually much harder to
achieve, since it requires anticipating likely future changes. It is usually
considered a nice-to-have feature. But it cannot really be guaranteed.

Incompatible Change s

If a change to the API breaks the client, the change was incompatible. In
general, removing and changing aspects of the API leads to incompatibilities.
A non-exhaustive list of incompatible changes:

Removing or changing data structures, i.e. by changing, removing, or
redefining fields in the data structure.
Removing fields from the request or response (as opposed to making it
optional).
Changing a previously optional request field in the body or parameter into
a mandatory field.
Changing a previously required response field in the body or parameter
into an optional field.
Changing the URI of the API, such as host name, port or path.
Changing the structure or relationship between request or response fields,
e.g. making an existing field a child of some other field.
Adding a new mandatory field to the data structure.

Reasons for breaking changes can be changed validation rules, new API-
products, new database, new infrastructure, consumers using the API in new
way. If the semantics of the resource changes or the resource has a different
(larger, smaller) scope, it is a new resource. Incompatible changes should be
avoided if possible. If the change needs to be made, a new, additional version

of the API has to be created, which exists in parallel to the existing API
version.

Dealing with Evolution in APIs

One needs to differentiate between compatible and incompatible API changes.

Compatible changes can be implemented with an in-place update. The
advantages of in-place updates are that the client does not break and no new
version needs to be created.

Incompatible changes would break the client and thus need to be offered as a
new version. Incompatible changes to published interfaces will break all
clients. If incompatible changes cannot be avoided by anticipating changes,
they need to be implemented in such a way that existing clients are not affected.
This means that the unchanged API needs to be maintained alongside with the
changed API. This results in two versions of the same API. Incompatible
changes need to be handled in such a way that existing clients are not affected.
This can be accomplished by creating a new version of the API.

Hype rme dia

When it comes to finding ways to support evolution and longevity, the web
itself is a good example. The web has been around for some time and it did
scale massively and lasts longer than most other software systems. The
hypermedia approach of the web has some characteristics that contribute to the
longevity of the system. We can use the same principle of the web in other
areas as well: Hypermedia means decoupling API implementation from the
way clients consume. Clients are smart, follow links and updates and changes
of APIs on their own.

Provisioning

If this is for some reason not possible, flexibility has to be introduced in
another way. Provisioning is one such approach. After a change, a bundle of
updated configurations is provisioned, by either pushing it to or pulling it from
the software. The bundle contains all the information for calling the updated
API and to extract the information from the responses. It contains one URI
which is not allowed to be changed and this is the URI of the provisioning
service. The provisioning approach is typically used, when hardware calls
APIs. The approach might be suitable for many internet of things applications.

Anticipating and Avoiding Evolution

APIs need to be backward compatible. Non-compatible changes to the API,
even if they are only small changes, would break the apps that were built with
the API. They need to be avoided at all costs. This is why planning ahead with
API architecture is extremely important. The API needs to be right the first
time it is published. API architecture does not only need to consider, how the

API will be used, but also needs to predict, how the API might evolve in the
future. But predictions about the future are extremely difficult and often the
most innovative uses of the API are not predicted beforehand.

But even if the exact changes cannot be predicted, the fact that there will be
changes -- any changes -- can be anticipated. This is why the API needs to be
prepared for versioning, right from the start.

If changes to APIs are not absolutely necessary, they should be avoided. Is a
new version of the API really necessary? Are the changes really worth the
effort of maintaining an additional API? Creating a new version and
maintaining this new version alongside the existing API, causes significant
overhead and thus, publishing an interface slows down any changes to the API.

Prevent Feature Creep

New API features are constantly required by business and by consumers. For
the API provider, it is easy to give in to these demands and add new
functionality to an API portfolio or even to an API. When adding new
functionality to an individual API, however, one needs to consider that these
features must be supported for the life time of the API.

For APIs, less is more. Less functionality results in simple APIs, and API
providers love simple APIs. Thus, APIs and API portfolios need to be simple
and need to have a focus. They cannot be everything to everyone. The danger
of attempting to provide APIs that suite anyone is feature creep. Feature creep
results in organically grown APIs, whose purpose is hard to understand to new
API consumers. It is thus certainly a balancing act to decide about the inclusion
of new features in the API and the API portfolio. The API provider needs to be
aware of the implications.

API Proxy Architecture
Simplicity is the ultimate sophistication.

-- Leonardo DaVinci

In previous chapters we have studied the architecture of the complete API
solution, the architecture of the API platform and the design of the API
portfolio. In those chapters we have viewed the architecture of each API proxy
as a black box, which we have never opened. In this chapter we open the box
to study the architecture of a single API proxy.

Requirements for APIs

Each API solution and each API has an architecture - but not all architectures
are equally good. How do we know what a "good" API architecture is? The
answer is: it depends -- it depends on the type of the API proxy, and its
responsibilities. Based on the responsibilities, we propose a list of desirable
properties, which form a benchmark for "good" API proxy architecture.

Armed with these requirements, we can then pick appropriate architectural
patterns and architectural styles for building great APIs. However, alternative
architectural patterns and styles may have advantages. This is why
architectural trade off decisions have to be made to choose between alternative
architectural ideas.

Responsibilities of APIs

APIs do not implement any business logic. The business logic and data storage
are implemented in the backend systems. So what do APIs typically do? There
are four main tasks or responsibilities for any API.

Gathe ring Data

APIs needs to be able to gather data from various data sources, such as
different types of databases, legacy systems or enterprise service buses. The
API needs to decide which backend it should use for gathering data based on
the request content or the request context. Sometimes, data from multiple
backend systems needs to be requested. Towards the API consumers, the API
needs to hide the backend systems, their technology stacks, protocols and data
formats.

Structuring and Formatting Data

When the data is exposed, it needs to be structured and formatted in such a way
that the data can be easily consumed and integrated by the consumer. For the

input and output of the API, the perspective of the API consumer is relevant,
not the perspective of the existing backend systems. The API needs to mediate
between the nice, clean, simple structure and format presented to the consumer
and the complicated format and structure used towards the backend system.

De live ring Data

In general, APIs need to expose easily consumable data in a secure and
performant manner. When data is delivered, the consistency of the data needs
to be ensured. Appropriate delivery protocols should be used by the API, e.g.
for real-time data.

Se curing and Prote cting

The API enables new business opportunities by opening up the IT systems of
the enterprise. This not only leads to new opportunities but also to new
security risks. Information could be stolen, or internal systems could be
compromised. To deal with these risks, the API needs to ensure that consumers
are properly authenticated and authorized to access the data. Moreover, the
API not only needs to ensure the security of the exposed data, but also the
security and availability of the API platform and - to some extent - the security
and availability of the backend systems, which are used by the API. This
means that the API needs to protect the API platform and the backend systems
from overload and attacks.

Desirable Properties of APIs

The goal for any API should be the fulfillment of their responsibilities
(gathering, structuring, delivering and securing). But which properties do APIs
need to have, so they can actually fulfill their responsibilities? This can be
answered from at least the following two perspectives. Ideally, the API
architecture covers both perspectives.

From the perspective of the consumers the question is: Which properties do
consumers expect from APIs?

And from the perspective of the providers the question is: Which properties do
providers expect from their APIs?

Consume r-Ce ntric: The API is made for API consumers, not for the API
provider. Regarding the input and output of the API, the perspective of the
API consumer is relevant, not the perspective of the existing backend
systems. The API needs to mediate between the nice, clean, simple format
presented to the consumer and the complicated format used towards the
backend system. The value of an API is in removing the complexity for
the API consumers, but still be valuable and relevant for the API
consumer.
Simple : There should be a low barrier of entry for new API
consumers. The API should be simple, so new users can get started

quickly and easily. The API should be easy to learn and easy to use. The
challenge is to create an API that not only looks much simpler, but
actually is much easier to use.
Se lf-Explanatory, Intuitive and Pre dictable : The URL needs to be
predictable, the parameters need to be self-explanatory and the data
objects need to be easy to understand. The API is consistent with the other
APIs in the portfolio.
Explorable and Discove rable : An API can be explorable by API
consumers. A curious API consumer can explore the API without reading
the documentation. APIs should also be discoverable by machines. This
requires enough machine readable information in the API and some
conventions that are followed.
We ll-Docume nte d: Some consumers prefer reading a documentation of
the API. For these consumers the API needs to be documented in an easily
digestible form, that is fun and exciting, too.
Atomic: The API operates only on one object and does only one thing --
from the API consumer's perspective. The fact that there are several steps
involved on the side of the API provider is irrelevant in this context.
Forgiving: The API should deliver error messages that can be understood
by the consumer. If the consumer made a mistake, the API provides hints
for fixing the mistakes. Another interpretation of a forgiving API is this: If
the consumer forgot to provide specific parameters, no errors should be
thrown. Instead, sensible default values should be used.
Se cure and Compliant: The API needs to ensure that it can only be
accessed by authenticated and authorized consumers. The API does not
leak internal information. The API is compliant with best practices and
with security regulations.
Pe rformant, Scalable and Available : For API consumers the
performance of the API is an important requirement. A highly performant
API allows them to build responsive apps with a great end user
experience. Successful APIs become more popular over time. The API
and the underlying platform need to be scalable.
Inte rope rable and Standard-Conform: The API should apply relevant
standards and follow industry conventions. Following conventions and
standards also improves the understandability of the solution. The APIs
should hide any implementation details.
Re usable : The API should not be specific for one API consumer or one
project. The API itself should be reusable, but it should also be built from
reusable components. This makes APIs consistent. The reusability
property is desirable for the API provider, the resulting consistency
among the API portfolio is desirable for the API consumer.
Backward Compatible : An API needs to be backward compatible. Old
clients need to be supported. If new features do not allow for backward
compatibility, a new API or a new API version is created. Once APIs are
published and used, they cannot be changed or taken away. Consumers
rely on the APIs to work and to work in exactly the prescribed manner.
Even though APIs can be very well developed in an agile way, once they
are published and used, all the agility has to be left behind and the given
version of the API becomes immutable.

How do we use this long list of desirable API properties? We can use it for
evaluating the architecture of APIs or we can use it to figure out what we need
to improve about the architecture, so it exhibits more desirable properties.

Architectural Patterns

An architectural pattern is a reusable solution to a common challenge in
architecture. Several such architectural patterns exist. From a pragmatic
standpoint the question is: How do we know which pattern to use and whether
an architectural pattern is appropriate for a specific API?

The simple answer is: the resulting API exposes many of the previously stated
desirable properties. For realizing APIs with desirable properties, the
following patterns are used: the stateless server pattern, the facade pattern and
the proxy pattern. In the remainder of this section, we study each of these
patterns in detail.

Client Server Patterns

In the client-server architecture, client and server are realized as independent
components, running on independent hardware and software stacks. Client and
server are loosely coupled and relatively independent. The advantage of this
pattern is that client and server can evolve independently. Since client and
server are independent, they need to agree on a mechanism for maintaining the
application state.

The state can be for example a set of selections that were made on a previous
web site or in a previous API call. In principle, state can be maintained on the
server side or on the client side.

In the following we introduce two options: a stateful server and a stateless
server. A stateless server pattern is chosen for APIs. To show its properties,
we contrast it in the following with a stateful server.

State ful Se rve r Patte rn

When communicating with a stateful server, the client can assume that the state
and context of the previous communication is available on the server. The
server maintains all the state information in a persistent state object, or a
session object, which is preserved in between calls. An identifier for the
session is sent to the client. This identifier is called session ID and is used to
correlate the state in between calls. The session ID needs to be included in all
subsequent calls of the client. Including the session ID into the call ensures that
the corresponding session data is available on the server.

State le ss Se rve r Patte rn

A stateless server does not maintain any information. State can still be used,

but it is realized in a different way: the client maintains the application state.
The server needs to receive all the necessary information from the client with
each API call and it needs to return the updated information in the API
response. The server thus ensures, that the client has all necessary information
to maintain state. The client keeps the state until the next call to the server.

An advantage of this pattern is the scalability, availability and performance of
the solution. The capacity of the solution can be increased by adding new
nodes for processing and setting up the load balancer. No server state needs to
be migrated to the new nodes. For the same reason, it is equally little effort to
scale the solution down by removing processing nodes.

Another advantage is the conceptual simplicity from the API consumers'
perspective. No preconditions need to be fulfilled before the API call can be
made.

A disadvantage of stateless communication with this client-side form of state-
maintenance is the increased network traffic and processing overhead. The
data that would be in the session object in a stateful architecture, is serialized
and transferred to the client as part of the response, the client deserializes and
processes this information and includes the relevant information into the
follow-up request. The server receives and processes the data.

Facade Pattern

The responsibility of the API is to expose easily consumable data in a secure
and performant manner. Typically, the API does not need to implement the
business logic or storage of the exposed data. The API is merely a facade. The
business logic is executed behind the facade in internal backend systems,
which are hidden from the API consumers.

The API facade uses the principle of information hiding. Hidden behind the
facade are complicated backend requests with large and complicated data
structures and with meta data that is irrelevant for the consumer. Examples for
such backend systems are databases, SOAP services, ESBs, legacy systems,
legacy or proprietary protocols, monolithic mainframes or big applications.
The facade is used to expose internal systems and make them accessible and
consumable by app developers.

A facade consists of an interface and an implementation. To create a facade,
two things need to be done:

1.		Design the interface that would be perfect for your consumers, based on
your consumers needs.

2.		Create an implementation to mediate between the interface and the
	
backend system. The implementation enforces security, authorizes
	
consumers, monitors usage, and shapes the traffic.
	

Almost all APIs apply the facade pattern, especially when APIs are used to
provide access to legacy systems. An exception may be APIs without any

dependencies to legacy systems. They can be found in startups and young
companies. In these cases, the API does not require the facade pattern, since
the business logic is implemented as part of the API.

Advance d Use of the Facade Patte rn

Besides this basic usage of the facade pattern, more advanced uses can be
considered. The facade pattern can be used in a layered system in combination
with a pipe and filter pattern. This pattern is described in detail in the chapter
on API Portfolio Architecture.

The lower level APIs use the facade pattern to hide diverse backend systems,
data bases, services, different protocols and provide a consistent API layer.
This API provides a large set of data. It cannot be accessed by any external
consumers. It is only used internally, as a utility API.

The higher level APIs filter results from the lower level APIs. The API
provider can configure these APIs using a filter. The filter configuration is
used for tailoring the APIs for specific consumers, devices, or applications.
These higher level APIs are accessible by consumers. Moreover, each
consumer reaches a customized version of these APIs.

Proxy Pattern

A proxy provides an interface to an original object, that is not intended to be
exposed directly. Any calls to the proxy are forwarded to the original object.
The proxy does not contain any business logic, but functions as a wrapper. The
wrapper enriches the functionality of the original object without changing the
original object directly.

APIs are typically realized as proxies to the backend systems that deliver the
data. APIs provide typical proxy functionality, such as simplifying,
transforming, securing and validating requests and responses. The terms API
and API proxy are used interchangeably.

Architectural Styles

In general, an architectural style is a large-scale, predefined solution structure.
Using an architectural styles helps us to build the system quicker than building
everything from scratch. Architectural styles are similar to patterns, but
provide a solution for a larger challenge.

In this section we study several architectural styles for communication in
distributed systems. The REST style (Representational State Transfer), the
HATEOAS style (Hypermedia As The Engine Of Application State), the RPC
style (Remote Procedure Call) and the SOAP style. We compare the
approaches, show advantages and disadvantages, commonalities and
differences.

APIs can basically be realized using each of these styles. How do we know,
whether a particular architectural style is appropriate for a given API? The
resulting API exposes many of the previously stated desirable properties. Most
commonly, APIs are realized using REST over HTTP. This is why one can
assume in practice that APIs are realized with the REST style.

REST Style

REST (Representational State Transfer) is an architectural style for services,
and as such it defines a set of architectural constraints and agreements. A
service, which complies with the REST constraints, is said to be RESTful.

REST is designed to make optimal use of an HTTP-based infrastructure and
due to the success of the web, HTTP-based infrastructure, such as servers,
caches and proxies, are widely available. The web - based on HTTP -
provides some proof for an architecture that not only scales extremely well but
also has longevity. The basic idea of REST is to transfer the ideas that worked
well for the web and apply them to web services.

But before we get started with explaining the basic ideas of REST, let me clear
some common misconceptions about REST: REST is not standard. REST is not
a protocol either. REST is an architectural style, which is typically used in
combination with the HTTP protocol.

REST Conce pts

The central concept in REST is the concept of a resource. A resource is an
abstract data structure. REST APIs expose and manipulate these resources.
This is why the name of the API is typically indistinguishable from the name of
the resource that can be manipulated by the API. In addition, the URL of the
API is the URL of the resource.

Resources are almost like objects in the object oriented programming
paradigm. This is correct, as far as it concerns the presence of data fields and
methods, which manipulate the data fields. One of the important differences,
however, is that in REST, the methods are restricted to the set of HTTP
methods (sometimes they are also called HTTP verbs). This set of allowed
methods is called uniform resource interface. Besides the HTTP methods
specified in the uniform resource interface, no other methods can be used to
manipulate the resource. No other methods can be stated in API requests,
neither in the HTTP body nor in the base path nor in the parameters.

REST APIs mostly perform CRUD (create, read, update, delete) operations,
which can be easily mapped to HTTP methods. Creation can be performed by
a POST or PUT, reading is performed by GET, updating is performed by PUT
and a deletion is performed by a DELETE. Each of the HTTP methods has a
specific purpose and also a specific set of characteristics. For HTTP methods
relevant characteristics are, whether the HTTP method is safe and idempotent.
Idempotent methods can be repeated without altering the end result; executing
the method multiple times has the same effect as executing the method only

once. Safe methods do not have any side effects, do not change the state of the
resource and are read-only.

REST is incompatible with the commonly used procedure-oriented style for
web services, where procedures are first class objects. When defining
procedure-oriented interfaces, activities or operations are the abstraction and
services encapsulate procedures. With resource-oriented interfaces, data
structures are the abstractions, and a resource model is the service interface.
When building resource-oriented systems, a few fixed operations are used to
operate on resource interfaces.

REST Constraints

REST defines a number of constraints for API design. Many of the REST
constraints are actually HTTP constraints, and REST leverages these HTTP
constraints for web services. These constraints limit the freedom of design, not
every design is allowed any more.

REST imposes the following constraints:

Use of HTTP capabilities as far as possible.
Design of resources, not methods or operations.
Use of the uniform interface, defined by HTTP methods, which have well-
specified semantics.
Stateless communication between client and server.
Use of loose coupling and independence of the requests.
Use of HTTP return codes.
Use of media types.

Advantage s of REST

Each of these constraints contributes to the desirable system properties. In
return for following these constraints, designers can expect systems that have
specific, desirable properties. The REST style ensures that APIs use HTTP
correctly. By using HTTP correctly in APIs, you get many desirable properties
"for free", many things are already designed and implemented.

An advantage of REST is the scalability of the system. Since REST
systems are stateless and the requests are independent, it is easier to scale
the system by adding another server. The same features also allow for
fault tolerance, and an improved availability and reliability of the
complete system.
Another advantage of using this architectural style is the performance of
the resulting solutions. Caching functionality can be achieved for free, i.e.
without any additional implementations, since it is already taken care of
by the HTTP infrastructure. By using REST it is ensured that APIs can use
existing caching mechanisms.
Another advantage is the support for handling multiple content types. An
API may be able to deliver the resource in multiple, alternative formats,

and the client may be able to read responses in only one of these formats.
The content type negotiation mechanisms defines how client API can
exchange information about their capabilities and negotiate the
appropriate content type. This mechanism is inherited from HTTP.
Another advantage of REST is its simplicity. The creation of a new REST
API does not require a lot of overhead. In comparison, the creation of
SOAP services requires a larger overhead, due to the specification of
WSDL files with a compatible implementation.
The REST limitation to the uniform resource interface contributes to the
explorability and discoverability of APIs. With some experience in
HTTP, the available methods are self-explanatory, intuitive and
predictable, since the same methods are used in each and every API. As a
result, consumers can quickly access the service and perform calls.
REST services provide visibility, since it makes the intent of a request
available and accessible to any HTTP component. Roy Fielding defines
visibility as the "ability of a component to monitor or mediate the
interaction between two other components". HTTP ensures -- when used
correctly -- visibility. The correct use of HTTP in APIs requires the
correct HTTP methods and correct status codes.

HATEOAS Style

HATEOAS is an abbreviation for Hypermedia As The Engine Of Application
State. HATEOAS is an extension of REST and any of the constraints and
advantages of REST also apply to HATEOAS. HATEOAS has additional
constraints, allowing for more dynamic architectures. Clients can explore any
API without any a-priori knowledge of data formats or of the API itself.

HATEOAS Conce pts

According to HATEOAS, APIs are self-descriptive. All actions, which can be
performed on resources are described in the representations of the resources in
the form of annotated links. Each resource contains links to other resources.

The annotated links can be navigated by a generic client, which can interpret
and follow links. Since all resources are linked, the client only need to have
access to the root resource. From there on, the client can follow the links to
reach any other resource. This leads to a very dynamic architecture. Since the
client always navigates to the needed resource by following links, it is easy to
provide updates and make changes in this architecture. There are no breaking
changes, because the client does not make any assumption about the API. All
meta-information is obtained right before the call. If the API is changed, the
additional resources, which link to the changed resource need to be
updated,with new links and new associated meta-information.

The semantics of the resources is provided by media types. This is why the
HATEOAS style is also known as the hypermedia style.

An API following the HATEOAS style can be modeled as a state machine,

consisting of states and transitions. Resources correspond to the states and the
links between the resources correspond to the transitions of the state machine.
A client works with this state machine by extracting links and following them.

HATEOAS Constraints

All REST principles apply.
An identifier is assigned to any resource, which is important enough to be
directly manipulated or accessed. This ensures that a link can be created
to this resource.
Resources are linked to each other. Representations of API responses
contain hyperlinks pointing to other resources.
The semantics of API responses is provided by the media types.

Advantage s of HATEOAS

Flexibility: new versions, or changed media types can be realized without
breaking any clients. For example, it is in the hands of the server to
transparently change the URI structure.
Simple client logic: the client does not need any a-priori knowledge of
the API.
Simple evolution of APIs: API and client do not need to evolve in synch,
as they need to with REST, RPC or SOAP.

RPC Style

RPC is an abbreviation for Remote Procedure Call. RPC is an architectural
style for distributed systems. It has been around since the 1980s. Today the
most widely used RPC styles are JSON-RPC and XML-RPC. Even SOAP can
be considered to follow an RPC architectural style.

The central concept in RPC is the procedure. The procedures do not need to
run on the local machine, but they can run on a remote machine within the
distributed system. Calling a remote procedure should be as simple as calling
a local procedure.

How doe s RPC work?

A remote procedure is invoked from a client by serializing the client's
parameters and additional information into a message and sending the message
to a server. The server receives the message, deserializes its content, performs
the requested calculation and sends a result back to the client, using the same
serialization/deserialization mechanism.

JSON-RPC

JSON-RPC is used to call a single procedure on a remote machine. When
serializing the request or response it uses a well-defined JSON schema for

JSON-RPC. It not only defines a JSON schema for the serialization of requests
and responses into JSON, but also defines the fault handling with error
messages. It is currently specified in version 2 [19].

XML-RPC

XML-RPC is used to call a single procedure on a remote machine. As its name
suggests, it uses XML for serializing the procedure request (methodCall) and
response (methodResponse). Additionally, messages for fault handling are
described. The nesting of XML allows transporting complex data structures.
XML-RPC has been around since 1998 [20] and later evolved into SOAP.

SOAP Style

SOAP follows the RPC style and exposes procedures as central concepts (e.g.
getCustomer). It is standardized by the W3C [21] and is the most widely used
protocol for web services. SOAP is most commonly used for internal
integration within enterprises.

SOAP offers bindings to a variety of transport protocols, such as HTTP,
SMTP, TCP, UDP or JMS. SOAP is based on XML and actually evolved from
XML-RPC. A serialized SOAP message is wrapped by an envelope containing
a header with meta information, and a body with a request, a response or a
fault. Complex data structures for request and response can be defined and
described by XML schema. The interface of SOAP services is described by a
dedicated, standardized language, the Web Service Description Language
WSDL [16].

SOAP offers many extensions, for example for transferring binary data, for
security, federation, trust, encryption and signing - just to name a few. These
extensions are also known as WS-*, and some of the extensions are
standardized, while others are product-specific.

SOAP style architectures are in widespread use, however, typically only for
company internal use or for services called by trusted partners.

Architectural Trade-offs

APIs can be realized according to the REST, HATEOAS, RPC or SOAP style.
Sometimes there are trade-offs with other architectural demands. Good
judgement has to be used to determine which demand wins. Examples of such
competing architectural demands:

Information abstraction
Simplicity
Loose coupling
Network efficiency
Resource granularity
Convenience for the consumer

In the following we compare some of the most common alternatives for API
styles.

RPC in Comparison to REST

Not every service that is exposed over HTTP complies to the REST
constraints. Sometimes one can find services, which are advertised as
following the REST style, but in reality they follow the RPC style. In fact,
there may be a grey zone between REST and RPC, when a service implements
some features of REST and some of RPC. The Richardson Maturity Model can
be used for determining the degree to which a services is RESTful. The
following levels are defined:

Level 0: Services use an RPC style.
Level 1: Services expose resources. Larger services are broken down
into resources.
Level 2: Services use HTTP methods correctly. Services use HTTP
infrastructure efficiently.
Level 3: Hypermedia is used according to HATEOAS. The service is
self-documenting and flexible.

According to Roy Fielding, the REST style requires level 3, which is in fact
HATEOAS. However, typically people speak about REST services, even if
only levels 1 or 2 are reached. REST at lower levels is sometimes called
"pragmatic REST".

Here are a couple of simple, practical tricks to determine if a service is not
RESTful:

If the name of the service is a verb instead of a noun, the service is likely
RPC and not REST.
If the name of the service to be executed is encoded in the request body,
the service is likely RPC and not REST.
If the back-button in the web-application does not work as expected, the
service is not stateless and not REST.
If the service or website behaves as expected after turning cookies off, the
service is not stateless and not REST.

HATEOAS in Comparison to REST

HATEOAS is a specialization of REST, so those two contenders have a lot of
commonalities. This is why we have to look into the details to compare the
two styles. For this purpose we can use the four levels of the Richardson
Maturity Model:

Level 0: Services use an RPC style.
Level 1: Services expose resources. Larger services are broken down
into resources.
Level 2: Services use HTTP methods correctly. Services use HTTP
infrastructure efficiently.

Level 3: Hypermedia is used according to HATEOAS. The service is
self-documenting and flexible.

According to the model, HATEOAS is the most mature version of REST.
However, HATEOAS is not widely used in practice for a variety of reasons.
Realizing a HATEOAS-based solution requires a requires are quite large
paradigm shift for the designers and way more advanced and intelligent API
clients than are typically used and built today. This is why HATEOAS mainly
serves as a vision for the long term development of RESTful API design.

Pragmatic REST at level 2 is the architectural style, which is most commonly
used today. It strikes and attractive balance between familiarity and
advantageous non-functional properties. Pragmatic REST is not as foreign to
designers as HATEOAS, but still provides many benefits, such as simplicity,
cacheability, performance and statelessness.

SOAP in Comparison to REST

SOAP makes data available as services (e.g. getCustomer), REST makes
data available as resources (e.g. /customer/123/address).

REST services are considered lightweight, SOAP services are considered
heavy weight. This has two reasons. SOAP services are typically coarse-
grained, and deliver comprehensive data structures. REST services are
typically fine-grained and serve bite-sized data structures. SOAP messages
contain a lot of meta data and only support verbose XML structures for
requests and responses. Also, due to their large size, SOAP services are
considered complicated for service providers and for service consumers.
REST services strip their data structures down to the necessary elements.

SOAP can be bound to many protocols, including HTTP, TCP, UDP and SMTP.
REST is limited to HTTP. SOAP is usually used over HTTP, however, it is not
optimized for HTTP: SOAP use the POST method, is thus non-idempotent and
does not offer any cacheability. SOAP services do not offer visibility, since no
semantic information about the method can be deduced. REST is optimized for
the HTTP protocol and can make full use of its caching and content-negotiation
features.

SOAP is well-suited for enterprise integration, due to its rigid structure, and its
security and authorization capabilities. SOAP is good for transactions or for
enforcing a formal software contract between API and client based on a legal
contract between API provider and API consumer. SOAP is typically used for
integration with enterprise partners.

REST is well-suited for APIs that are intended for wide adoption with many
API consumers. Due to the relatively simple data structures and fine
granularity, REST is well suited for devices with limited computing resources,
such as mobile devices and for the internet of things.

Conclusion

There are many discussions about HATEOAS vs. REST vs. RPC vs. SOAP
and whether a given architecture is truly RESTful or not. But the answer to
these questions may not be so important after all. The reason is, that these
discussions revolve mainly around topics, which are of interest from the API
provider's perspective. All that matters, when it comes to APIs, is the
consumer's point of view. And from the consumer's perspective, these issues
might not even be of interest.

If an API is not consumer-oriented, it does not matter if it is RESTful or not,
since no consumer will want to use it. And if an API is consumer-oriented, it
does not matter whether it is RESTful or not, since consumer will want to use
it anyhow.

API Description Languages
Whenever APIs need to be communicated among various stakeholders, APIs
needs to be described in some from. Thus, it should be as easy as possible to
describe APIs. Specialized languages can support the crafting of useful API
descriptions by providing appropriate abstractions and language concepts.
Such specialized languages are API description languages.

In their short history, the role of API description languages has changed
significantly. The original purpose of API description languages was a
language for creating API documentation, in a similar way as JavaDoc
provides a language for documenting Java programs. Today, API description
languages can be used for many additional purposes during the design and
development process of APIs, not only for their original purpose of generating
a pretty documentation.

API description languages are machine readable specifications of the API.
Machine readable specifications can be used for automating tasks in API
development. If used correctly, automation has the potential to increase the
productivity of API development. We will see more examples for increasing
the efficiency of API development later. Here is just a small example as an
appetizer:

The API description can be used for the partially automated generation of code
for the API. The API description thus has the potential to support the API
provider. The same API description can also be used for the automated
generation of client-stub-code for the app consuming the API. This time the
consumer is supported by the same API description.

In this chapter we introduce the most important tools for API design: API
description languages. If used correctly, API description languages are very
powerful tools that can be far more than just languages. They can serve as the
"single source of truth" and as the main reference for all aspects of API design
and development.

What are API Description Languages?

API description languages are domain specific languages, which are especially
suited for describing APIs. They are both human readable and machine
readable languages, much like programming languages. They are intuitive
languages that can be easily written, read and understood by API developers
and API designers alike. Description languages are also precise, leave little
room for ambiguity and are very expressive and powerful. They have a well-
defined syntax, which makes it possible to process them automatically by
software.

Compared to programming languages or API implementation languages, API
description languages use a higher level of abstraction and a declarative

paradigm. This means that they can be used to express the "what" instead of the
"how". For example, they define the data structure of the possible responses
(the "what"), instead of describing how the response is computed (the "how").
This makes them very well suited for expressing the architecture of each API
proxy in the portfolio and the design of the API portfolio as a whole.

API Description Language vs. API Development Language

An API platform should provide two types of languages. The first language that
should be provided is a higher-level language, which can be used for designing
APIs and for expressing the "what". It is called API description language. The
second language that should be provided by an API platform is a lower-level
language, which is used for implementing APIs and for expressing the "how".
This is the API development language.

An API description languages is a domain specific language for expressing
API design. API platforms provide not only the language, but also design tools
for creating API interface designs, tools for generating documentation, tests
and the implementation from the API description.

An API development language is a special purpose language that is used for
implementing APIs. It incorporates many API building blocks as language
constructs. The language offers a way for combining the building blocks into
meaningful APIs.

What is the relation between API description languages and API development
languages? First, APIs should be designed using an API description language.
Some API platforms have support for API description languages built in. This
means that the platform supports the parsers, and code generators for a specific
API description language. The generated implementations should be expressed
in the API development language.

Usage

In this section we present several use cases for API descriptions. These use
cases are not chosen for their completeness, but they are chosen to convey the
central role of API descriptions for the API design and development. API
descriptions can support all phases of API design and development.

Communication and Documentation

Since an API is an interface connecting two or more software systems, it is
important that the API is understood by the involved developers on all sides.
Some of the involved developers are on the side of the API provider and busy
developing the API. Other developers are on the consumer side. They typically
develop apps that use the API. The idea of loose coupling of services is great,
as long as it is ensured that the services are well understood by the developers
on API provider side and on API consumer side.

To provide a shared understanding of an API, the API needs to be well
documented. This is all the more important as the developers are not co-
located and can quickly share their insights. Instead, they are spread out over
different companies, countries, continents and time zones. An appropriate
documentation can help in this case. This is why the documentation of APIs is
extremely important for both developers of the server-side API implementation
and for the client-side API consumers.

Documentation is usually delivered as written prose in a document.
Alternatively, some developers might consider the code sufficient as a form of
documentation. A short and precise description of all the important design
decisions for the API has advantages to prose documentation and to code as
documentation. Code is precise but is too long, too complicated to understand,
and may not be publishable due to intellectual property or security
considerations. Prose documentation may simply be not precise enough.

The original purpose of API description languages is providing human
readable API documentation. To relieve the developer from the burden of
formatting pretty HTML pages, domain specific languages (DSL) for
documenting APIs have been created. Based on such a DSL, the documentation
of the API can be automatically generated. If you have used Java, you might be
familiar with JavaDoc, an approach for generating documentation from
specially marked annotations in Java programs. A similar approach is taken
here; the documentation is generated based on a special purpose language: the
API description language.

If the API documentation is written in an API description language, it has some
attractive properties. The API documentation contains only relevant
information and this information is available in a structured, ordered and
compact form. This makes API description languages suitable for being written
by developers. The reason is that writing an API description is actually very
similar to writing a program. No formatting or styling needs to be provided,
but the documentation needs to follow rigid syntactic rules. In this respect, API
description languages are similar to programming languages. API descriptions
written in these languages are thus ideally suited for machine processing.
Parsers can take the description apart and build an abstract syntax tree. This
abstract syntax tree is then traversed by generators to produce other
representations, for example a pretty HTML page.

While the API developer might enjoy the simplicity and clarity of the API
description, the API consumer might expect the API documentation to be a
pretty, colorful and interactive HTML page. To allow for both views of API
provider and API consumer, a generator is used to extract the information from
the API description and to generate the corresponding human-readable
documentation.

API descriptions also enable the creation of an interactive documentation.
Interactive documentation is not only meant to be read like regular
documentation, it also includes a testing bed for the APIs. API consumers can
make test calls to the real API or to a simulation of the API directly from the

documentation page. They do not even have to use any external tools.

API consumers typically have a choice between alternative APIs, which
roughly do the same thing. The first point of contact between API consumer and
API is the documentation. A documentation, which is better than the
alternatives and ideally is interactive, it may convince an API consumer to
shortlist this API.

Design Repository

The API description of an API proxy is the central reference of truth for this
API. If you are ever in doubt, which version of the API accepts a certain
parameter or which status codes are returned by the API, the API description is
the definitive, authoritative point of reference. The API description contains all
the important design decisions for that API proxy. Not only a single API proxy
should be documented, but the complete API portfolio, including the API
descriptions of all API proxies. To provide a history and synchronized access
in a distributed development team, the API descriptions should be put under
version control, e.g. in a GIT or SVN repository.

Contract Negotiation

From a process perspective the API description can serve as a design contract.
This contract can be used for agreements between API designer and API
developer or as a contract between API consumer and API provider. The API
description enables contract-first design. Both contracting parties negotiate this
contract, decide on it and rely on this contract during the implementation and
maintenance phases.

Traditionally, app developers would need to wait for the API to be finished.
Contract first design allows starting the implementation of the app by the
consumer before the provider has finished building the API. Thus contract first
design allows for a very efficient development process with a much quicker
turn around time. It allows app developers to bring their apps to market
quicker than before. In contract-first design, the precise description of the
design contract is essential. This is the strength of API description languages.

API Implementation

Since the API description is machine readable, it can be used for automating
tasks in software development. Such an approach follows the ideas of
generative software development, model driven development and domain
specific languages. If used correctly, these approaches have the potential to
increase the productivity of software development.

The API description can be used by the API provider to automatically generate
API skeletons. An API skeleton contains some important pieces of the
implementation, it is, however, not complete. The skeleton needs to be
extended and filled with manual implementation before the API can be used.

These skeletons contribute to a higher speed for API implementation as well as
to a higher quality of the API implementation. The speed is higher, because the
developer does not need to write all the code himself, but a large portion of the
code is already written for him automatically. The quality of the API is
improved by code generation, since the generated code is consistent with the
API description.

When the first iteration of the API implementation is generated from the API
description, the API implementation is created from scratch. There is no prior
implementation to take care of and the API implementation initially only
consists of the API skeleton. A challenge for automated code generation are
updates to the API description. If a previous implementation already exists, the
newly generated code needs to be merged with the existing code. Depending
on the code generation framework, this might be supported by specific code
markers, which are used to separate the generated code skeleton from the API
implementation.

Client Implementation

On the API consumer side, the API description can be used for generating
client stubs for accessing the API. With an appropriate code generator, the
client stub can be generated for the programming language used by the
consumer.

For the API consumer, code generation has a couple of advantages. By
generating the client stub for accessing the API, it is ensured that the
implementation actually matches the specified contract. For the API consumer,
code generation speeds up the development process.

Support during client implementation is only possible, if the API provider
makes the API description available to the consumers. The API description of
the API should be served by a specific endpoint of the API. Thus, the API can
be said to provide some kind of reflection

Discovery

How does the client know about the capabilities of the API? One answer is:
the client does not need to know, since the API needs to be understood by the
API consumer and he develops the client. The consumer can learn about the
API from the human-readable documentation. Another answer is: the client
needs to be able to explore or discover the capabilities of the API
programmatically. With such an automated discovery mechanism, an app may
include new APIs, which have not been known at design time.

To enable such an implementation, an API description of the API portfolio
should be served by a specific endpoint. This allows the caller to discover
each API within the portfolio by downloading and parsing the API description.
A precondition is that the API provider made the API description available to
the consumers.

Simulation

A simulation can provide a first impression of the finished API to the
consumer. In the early phases of API design, a simulation can be presented to
pilot consumers for eliciting their initial feedback. The pilot consumers can
even base first demos of their apps an the API simulation.

In general, a model of the real world is needed to create a simulation. An API
description contains such a model. The model is provided in the form of the
interface specifications that are necessary to build a simple simulation or
mockup.

A specification of the input data in the form of query parameters, form
parameters, header parameters path parameters or a data structure in the
message body is included in an API description. The simulation can
verify input according to the specification.
A specification of the error messages is included in an API description.
The simulation can produce error behavior according to the specification.
An example response is specified, which can be served by the simulated
API. Sometimes an example is directly provided as part of the
description, sometimes the example has to be constructed based on a
generic specification of the data structure.

Language Features

The API description is a technical contract between API provider and API
consumer, so it is important that the designed contract is unambiguous and
clear. A contract should provide clarity to all involved stakeholders and
should enable simultaneous development of both the consuming and providing
software components. This is why the language for expressing the contract --
the API description language -- needs to have the following properties:

Compactness: The contract should be as compact as possible, reduced to
the necessary and the relevant. Repetitions should be avoided by proper
language abstractions.
Precision: Since the API description language is used for specifying a
contract, it needs to be precise and unambiguous.
Relevance: The feature of the language need to be relevant for API design
and should not contain unnecessary or superfluous information.
Agility: It is easier to iterate on a design document than on source code.
And it is even easier to iterate on a dedicated description than on a
longhand description of the API.
Clarity and structure: A longhand description of the API cannot be as
clear, unambiguous and structured as a dedicated language.
Communication: The API description languages are quite technical. But
you do not need to be a programmer to understand an API description.
Architects or business should be able to use an API description as well.
The generated HTML documentation is available to an even larger
audience.

Quick Validation: It should be possible to validate an API description
quickly and easily, possibly in an automated fashion.
Quick Iteration: The API description language should support an agile and
iterative development approach. Based on a first iteration of rough draft
of an API design it should be possible to create a refined second iteration.
The level of detail can be added or removed.
Intuitive: It should be possible to use the API description language
without a lot of training.

Any API description language should have the properties listed above. Today,
a number of API description languages are available. Which should be chosen?
The most popular and widespread API description languages are Swagger,
RAML, Blueprint, Mashery I/O Docs, WADL and WSDL.

WADL and WSDL have been around for a long time, their use is widespread,
they can be used for API design, however, they have not been created
specifically for API design and thus are lacking important features. The Web
Application Description Language (WADL) was created for web applications.
It does not contain any built-in support for JSON schema, or commonly used
security schemes such as OAuth. The Web Service Description Language
(WSDL) is used for describing SOAP services. It supports RPC-style services,
which exchange XML-based SOAP requests and responses. WSDL cannot be
used for describing REST services, since it does neither support JSON data
structures, nor API security schemes such as OAuth.

The languages Swagger [12], RAML [13], API Blueprint [15] and Mashery I/O
Docs [16] have been created specifically for RESTful API design. In the
following we introduce Swagger and RAML, two popular languages for
creating API descriptions.

Swagger

Swagger is a popular API description language. Excellent tool support is
available and Swagger is supported by many API platforms, such as Apigee,
3scale, WSO2 and Dell Boomi.

Introduction

This description is based on Swagger v2.0 [12]. It is not a replacement for a
complete and thorough introduction to Swagger. This section intends to
provide some intuition for the usage of Swagger.

There are actually two variants of Swagger 2.0, one variant has a JSON syntax
and the other variant has a YAML syntax. Only the YAML [29] syntax is
presented here. The basic syntax of YAML applies, which uses whitespace for
structuring. A YAML file is hierarchically structured and consists of
properties, which are realized as key-value pairs and objects. Objects have
child properties, which are indented with whitespace. It is possible to have
lists as values, they are presented in squared brackets []. There can also be

en in a specific language

d ISBN

lists of properties, in this case a minus - is used in front of each property in the
list.

An API description in Swagger contains the following main information items:

Basic information and meta-information, such as name, title, and location
of the API and user documentation. This information is captured in the
root element.
A list of resources including methods, schemas and parameters
Reusable elements such as data definitions, responses, parameters and
securityDefinitions

Example

Let's get started by looking at the API portfolio of an online book store. This
API portfolio contains two APIs, one collection API delivering a listing of all
the books and a book API, providing details for a specific book, which is
identified by an ISBN. In the following we describe this API portfolio using
Swagger.

swagger: '2.0'
info:

title: Book API
description: The book API ...
version: v1

host: domain.com
schemes:

- https
basePath: /v1
produces:

- application/json
paths:

/books:
get:

summary: Book listings
description: Provides a list of all available books writt
parameters:

- $ref: '#/parameters/languageSelection'

responses:

200:

description: A listing of the books

schema:

type: array

items:

$ref: '#/definitions/Book'

/books/{isbn}:

get:
summary: Book information
description: Information about the book with the specifie
parameters:

- name: isbn

in: path

description: ISBN of the book to get

required: true

type: string

responses:
200:

description: The book with the given ISBN

http:domain.com

schema:

$ref: '#/definitions/Book'

security:
- oauthImplicit: [read_books]

parameters:
languageSelection:

name: lang

in: query

description: select the language of the books

type: string

definitions:
Book:

properties:
title:

type: string
author:

type: string
price:

type: string
isbn:

type: string
language:

type: string
description:

type: string
example:

title: Walden,
author: Henry David Thoreau,
price: 8.90,
isbn: 123456789X,
language: en,
description: A reflection on simple living in nature

securityDefinitions:
basicAuth:

type: basic
apiKeyAuth:

type: apiKey

name: api_key

in: header

oauthImplicit:
type: oauth2
authorizationUrl: https://domain.com/oauth/authorization
flow: implicit
scopes:

write_books: modify books

read_books: read books

As you can see in the example, Swagger is a hierarchically structured
language. Sub elements are indented relative to their parent elements.

All elements of this example are taken apart and explained in the following
subsections.

Root Element

The root element is at the top of the Swagger description. It is used to describe
basic information about the API and to provide some meta information. The
root element includes the following properties:

host: The property host specifies the host name or IP address of the host,

https://domain.com/oauth/authorization

on which a running instance of the API or an API simulation are or will
be deployed.
basePath: The basePath is the part of the URI of the API, which follows
directly after the host name. It points to a running instance of the API or of
an API simulation.
schemes: The schemes in the root element are the default protocols used
for this API. The scheme property can have the values ws, wss, http,

https. It can be overwritten per method.
consumes: The consumes property defines the media types consumed by
the APIs.
produces: The produces property defines the media types produced by
the APIs.
info: The property info specifies meta information about all the APIs in
the portfolio. It includes fields such as

title: Title of the API portfolio.
description: Description of the API portfolio.
termsOfService: Link to a terms of service description for the API
portfolio.
contact: Contact information, including name, email, URI.
license: Link to the license of the API portfolio.
version: Version of the API portfolio.

paths: The path property defines the resources of the API. We will study
this element closer in the section on resources.
responses: Reusable definitions of responses. We will study this
element closer in the section on resources.
parameters: Reusable definitions of parameters. We will study this
element closer in the section on parameters and in the section on reusable
elements.
definitions: Reusable definitions of data structures. We will study this
element closer in the section on reusable elements.
securityDefinitions: Reusable definitions of security schemes. We
will study this element closer in the section on security.
security: Default security for this API, references one of
the securityDefinitions. We will study this element closer in the
section on security.

Resources

Resources are described in the paths property. Each resource is identified by
its relative path (relative to the basePath). For each resource, a number of
HTTP methods (GET, POST, PUT, DELETE, etc.) can be listed. For each
method, the following properties can be defined:

summary: One line summary describing the purpose of the resource.
description: Verbose description of the resource.
schemes: The schemes of this particular method. The scheme property
can have the values ws, wss, http, https.
security: The security mechanism, which is used to protect this API.
parameters: List of input parameters, which can be provided for this
API. Different types of input parameters (query parameter, header

ure

parameter, form parameter or path parameter) are supported. These
parameter types are described in more detail later in this chapter.
responses: List of response types, which can be expected from this API.
The response types are identified by their status code. Responses are
described in more detail later in this chapter.
consumes: The media types consumed by the resource.
produces: The media types produced by the resource.
operationId: Unique name of this resource.

An example of a resource with a GET method:

swagger: '2.0'
paths:

/books:
get:

summary: Book listings

description: The book listings based on a title

schemes: https

security:

oauthImplicit

- read_books

parameters:

...

responses:

...

produces: application/json

Each method offers a list of possible responses. Responses are identified by
the HTTP status code they provide. A response has the following properties:

description: Description of the response.
schema: Definition of the HTTP body of the response. It can be a
primitive type (string, number, integer, boolean, file), an array or an
object.
headers: Header parameters of the response. It is structured in a similar
way as the header parameters of the request.
examples: An example response.

swagger: '2.0'
paths:

/books/{isbn}:
get:

summary: Book listings

responses:

200:
description: Successful response with a book listing
schema:

$ref: '#/definitions/Book'

examples:

application/json:
title: Walden
author: Henry David Thoreau
price: 8.90
description: A reflection on simple living in nat
isbn: 123456789X

Schema

Swagger differentiates Schema definitions and schema references. Schema
references merely refer to a previously defined schema. Schema definitions are
used to define a data structure. They are properties of the root element. They
are based on the abstract syntax of JSON Schema [25]. If Swagger is used in
the YAML variant, the schema definition can be expressed in the concrete
syntax of YAML, as shown in the following snippet.

Besides the specification of the data structure, a schema definition may also
include an example instance of the data structure.

swagger: '2.0'
definitions:

Book:
properties:

title:
type: string

author:
type: string

price:
type: string

isbn:
type: string

language:
type: string

description:
type: string

example:
title: Walden,
author: Henry David Thoreau,
price: 8.90,
isbn: 123456789X,
language: en,
description: A reflection on simple living in nature

ErrorModel:

type: object

required:

- message

- code

properties:

message:

type: string

code:

type: integer

minimum: 100

maximum: 600

ExtendedErrorModel:
allOf:

- $ref: '#/definitions/ErrorModel'

- type: object

required:

- rootCause

properties:

rootCause:

type: string

The data definitions can describe JSON or XML data structures depending on
the mime type declared in the surrounding element of the schema reference. For

XML data structures, additional information about the mapping to XML schema
can be provided in the xml property. It contains child properties such as
a name replacements, declaration of the namespace, declaration of the prefix,
or by the keyword attribute an indication is provided if a property should
be translated into an attribute or an element.

Parameters

Several types of parameters are supported. All parameters have the following
properties:

name: Name of the parameter
type: Data type of the parameter. It can be string, number, integer,

boolean, file, array

in: Type of the parameter. Can be path, query, formData,

header, or body. Interestingly, the body is listed as an input parameter.
schema: Schema of the HTTP body of the request. It is only available if
the property in is set to body. The schema is usually not defined in place,
but it is referenced, e.g. $ref: '#/definitions/User'.
required: Indicates if the parameter is optional or required. Can be true
or false.
description: A verbose description of the parameter.
format: Additional formatting rules for the parameter values.
items: Describes the elements in an array. It is only available if type is
set to array.
collectionFormat: Format for serializing an array. Possible values are:
csv, ssv, tsv, pipes, or multi. The default value is csv.

swagger: '2.0'
paths:

/books/{isbn}:
get:

summary: Book information

parameters:

- name: isbn

in: path

description: ISBN of the book to get

required: true

type: string

responses:

...

Path parameters are described by in:path. For path parameters a placeholder
is defined in the path of the resource. The name of the placeholder is the name
of the parameter.

Query parameters are described by in:query. Form parameters are described
by in:form. Header parameters are described by in:header. Input
parameters, which are provided in the HTTP body, are described by in:body.

Reusable Elements

When describing a complete API portfolio containing several APIs, API

descriptions would be quite repetitive. This is actually a good sign, since it
shows that API governance was applied on the API portfolio to ensure
consistency. Elements which are consistently applied throughout the
description of the API portfolio, can be factored out into reusable elements.

Some elements of a Swagger description can be reused by declaring them once
in the root element and referencing them later. The reusable elements can be
parameters, schemas and responses. References to reusable elements are
realized by the reference object. It has the following format.

$ref: '#/definitions/Book'

Reusable parameters can be declared in the parameters property of the root
element.

swagger: '2.0'
parameters:

skipParam:
name: skip
in: query
description: number of items to skip
required: true
type: integer
format: int32

Reusable schemas can be declared in the definitions property of the root
element.

swagger: '2.0'
definitions:

Book:
properties:

isbn:
type: string

title:
type: string

Reusable responses can be declared in the responses property of the root
element.

swagger: '2.0'
responses:

NotFound:
description: Entity not found.

IllegalInput:
description: Illegal input for operation.

GeneralError:
description: General Error
schema:

$ref: '#/definitions/GeneralError'

Security

Swagger differentiates the abstract definition of the security schemes and the

binding of the security schemes to a particular API.
	

Se curity De finition

A list of security schemes is abstractly defined in the
property securityDefinitions. Each item in the list has a name and the
following properties:

type: Type of the security scheme. Can have the values basic,

apiKey or oauth2

description: Description of the security scheme.
name: Name of the header or query parameter, which contains the apiKey.
Only relevant for type = apiKey.
in: Indicates if the apiKey is transmitted as header or query parameter.
Can have the values query or header. Only relevant for type =

apiKey.
flow: Indicates the OAuth grant type and can have the values implicit

(for implicit grant), password (for resource owner password credential
grant), application (for client credential grant) or accessCode (for
authorization code grant). Only relevant for type = oauth2.
authorizationUrl: URI of the OAuth authorization endpoint. Only
relevant for type = oauth2.
tokenUrl: URI of the OAuth token endpoint. Only relevant for type =

oauth2.
scopes: Available OAuth scopes. Maps the name of the scope to a short
description of the scope's meaning. Only relevant for type = oauth2.

An example for a security definition.

swagger: '2.0'
securityDefinitions:

basicAuth:
type: basic

apiKeyAuth:

type: apiKey

name: api_key

in: header

oauthImplicit:
type: oauth2
authorizationUrl: https://domain.com/oauth/authorization
flow: implicit
scopes:

write_books: modify book listings

read_books: read book listings

Se curity Binding

Each operation can use its own security scheme, by referencing to one of the
declared security definitions. For OAuth security schemes, a list of the
required scopes is provided.

Example for API keys:

https://domain.com/oauth/authorization

swagger: '2.0'
paths:

/books:
get:

summary: Book listings
security:

apiKeyAuth: []

Example for OAuth:

swagger: '2.0'
paths:

/books/{isbn}:
get:

summary: Book information
security:

oauthImplicit:
- read_books

RAML

RAML [13] is an API description language, which was invented by Mulesoft.
Spelled out, RAML stands for the RESTful API Modeling Language. In
addition to the language, a set of RAML tools are offered for describing,
producing, consuming, and visualizing RESTful APIs. RAML is supported by
some API platforms, such as Mulesoft Anypoint, 3scale and Restlet.

Introduction

This description of RAML is based on RAML v0.8. It is not a replacement for
a complete and thorough introduction to RAML. This section intends to
provide some initial ideas for the use of RAML. Detailed information is
available on http://raml.org and the language specification is available on
http://raml.org/spec.html.

RAML is based on YAML [29]. YAML describes hierarchical data structures -
similar to XML, but uses whitespace for structuring. Compared to XML,
YAML is more lightweight and more readable. A YAML file consists of
properties, which are realized as key-value pairs, objects or lists. Keys are
strings and values can be primitive types or lists. Lists are presented in
squared brackets [], e.g. securedBy: [oauth_1_0, oauth_2_0]. There can
also be lists of properties, in this case a minus - is used in front of the
property. Objects have child properties, which are indented by whitespace.

An API description in RAML contains the following main information items:

Basic information and meta information about the API, such as name, title,
location and user documentation. This information is captured in the root
element.
Resources including methods, schemas and parameters.
Reusable elements including resource types, traits and security
	
declarations.
	

http://raml.org
http://raml.org/spec.html

rt of the collection

Example

Let's get started by describing the Book API portfolio in RAML. It is the same
API portfolio we have used in the previous section for the description in
Swagger. This API portfolio contains two APIs, one collection API delivering
a listing of all available books written in a given language, and a book API
providing details for a specific book, which is identified by an ISBN. In the
following we describe this API portfolio in RAML.

#%RAML 0.8
title: Book API
baseUri: https://domain.com/{version}
version: v1
mediaType: application/json
protocols: [https]
documentation:

- title: Start page for the documentation of the API
content: |

The book API ...
resourceTypes:

- collection:
get:

description: returning a list of elements, which are pa
post:

description: adding a new element to the collection
traits:

- languageSelection:
queryParameters:

lang:
type: string

/books:
type: collection
get:

is: [languageSelection]

/{isbn}:

uriParameters:

isbn:

type: string

get:

responses:

200:

body:

application/json:

schema: |

{	 "$schema": "http://json-schema.org/schema",

"type": "object",
"description": "A book",
"properties": {

"title": { "type": "string" },
"author": { "type": "string" },
"price": { "type": "number" },
"isbn": { "type": "string" },
"language": { "type": "string" },
"description": { "type": "string" }

},
"required": ["title", "author", "isbn"]

}
example: |

{	 "title": "Walden",
"author": "Henry David Thoreau",
"price": 8.90,

http://json-schema.org/schema
https://domain.com/{version

in nature"

"isbn": "123456789X",
"language": "en",
"description": "A reflection on simple living

}

All language elements you can find in the above example are explained in the
following subsections.

Root Element

As you can see from the example, RAML is a hierarchical language. Sub
elements are indented relative to their parent element. The parent element of
them all is the root element at the top of the RAML description. It is used to
specify some basic information. It includes the following properties:

title: The title is a human readable name of the API.
	
baseUri: The baseUri points to a running instance of the API or of an API
	
simulation. The version can be part of the baseUri and can be referenced
	
as a URI template parameter.
	
version: The version of the API.
	
mediaType: The mediaType specified in the root element is the default
	
media type for this API portfolio. It can be overwritten per method.
	
protocols: The protocols in the root element are the default protocols. It
	
can be overwritten per method.
	
schemas: Schemas define data structures, typically in the form of JSON
	
schemas or XML schemas. They can be specified inline or can be
	
included from an external file.
	
documentation: User documentation is provided in the form of a title
	
and some descriptive text.
	
securitySchemes: Predefined security packages.
	
traits: Reusable parts for a method definition.
	
resourceTypes: Reusable parts for a resource definition.
	

Resources

Resources are direct child elements of the root and are identified by their
relative URI. The resource URI must begin with a slash (/). Resources can be
nested, where nesting is expressed by indenting the relative URI.

For each resource it is defined, which HTTP methods may be executed. All
basic HTTP methods are supported, such as GET, POST, PUT and DELETE.
Multiple HTTP methods can be used for each URI.

#%RAML 0.8
title: Book API
/books:

get:
responses: !include get.raml

post:
responses: !include post.raml

For each HTTP method multiple responses can be specified. The responses are

n nature"

identified using HTTP response codes. Each response consists of a
specification for header and body.

#%RAML 0.8
title: Book API
/books:

get:
responses:

200:

body: !include body.raml

header: !include header.raml

400:

description: Invalid Request

500:

description: Internal Server Error

The body is specified by providing the content type, a schema definition and an
additional example. Multiple representations of the same resource can be
served on the same URI, same method and same response code. The
representations are differentiated only by the content type.

#%RAML 0.8
title: Book API
/books:

get:
responses:

200:

body:

application/json:
schema: !include book.json
example: |

{	 "title": "Walden",
"author": "Henry David Thoreau",
"price": 8.90,
"isbn": "123456789X",
"description": "A reflection on simple living i

}

Schema

The schema definition is expressed as JSON Schema [25]. The schema can be
declared inline or it can be included from an external source.

#%RAML 0.8
title: Book API
/books/{isbn}:

uriParameters:
isbn:

type: string
get:

responses:
200:

body:

application/json:

schema: |

{	 "$schema": "http://json-schema.org/schema",

"type": "object",
"description": "A book",
"properties": {

"title": { "type": "string" },

http://json-schema.org/schema

"author": { "type": "string" },
"price": { "type": "number" },
"isbn": { "type": "string" },
"description": { "type": "string" }

},
"required": ["title", "author", "isbn"]

}

Parameters

In RAML, path parameters are declared as properties of the resource and all
other types of parameters are declared as properties of the method. All named
parameters have the following properties:

displayName: A human readable name.
description: Documentation of the parameter.
type: Data type of the parameter. The data type can be string,

number, integer, data, boolean, file.
enum: For parameters of type string, enum allows to define a list of all
valid string values.
pattern: A regular expression (ECMA 262/Perl 5) that values must
satisfy.
minLength: Minimum number of characters in a string value.
maxLength: Maximum number of characters in a string value.
minimum: Minimum integer value.
maximum: Maximum integer value.
example: Example value for this parameter.
repeat: Indicates how many times the parameter can occur.
required: Indicates if the parameter must be present (true/false).
default: default value for this parameter.

Path Parame te rs

Path parameters are called uriParameters in RAML. They are declared on
two locations. The location of the value of the path parameter is marked by the
parameter name in curly braces within the relative URI path. To provide
additional information about the parameters, it is also listed under the
uriParameters element. This allows for the declaration of the parameter type
and any of the other parameter properties listed above.

The books API can be called by GET /books/123 for example.

#%RAML 0.8
title: Book API
/books/{isbn}

uriParameters:
isbn:

type: string

Que ry Parame te rs

Query parameters can be declared for each HTTP method separately. The

books API can be called by GET /books?isbn=123 for example.

#%RAML 0.8
title: Book API
/books:

get:
queryParameters:

isbn:
type: string

Form Parame te rs

Form parameters can be declared for each HTTP method separately. The
books API can be called by POST /books. The body contains the following
isbn=123 for example.

#%RAML 0.8
title: Book API
/books:

post:
formParameters:

isbn:
type: string

He ade r Parame te rs

Header parameters can be declared for each HTTP method separately. The
books API can be called by GET /books. The HTTP header contains for
example the entry isbn: 123.

#%RAML 0.8
title: Book API
/books:

get:
headers:

isbn:
type: string

Reusable Elements

The description of a consistent API portfolio can be quite repetitive.
Repeatedly used elements should be factored out and thus become reusable
elements. Reusable elements are declared once and referenced several times.
In RAML, there are two categories of reusable elements. External reusable
elements can be included from separate files and internal reusable elements
can be referenced from the same RAML file.

Exte rnal Ele me nts: Inclusion of File s

RAML offers the a possibility to include the content of an external file. The
referenced file is inlined by a pre-processor. Including an external file is a
form of reuse.

rt of the collection

External reusable elements can be the right hand side of any YAML
declaration, i.e. anything right of the colon. In the following example, the
property with name external retrieves its value from an included text file.
external: !include myTextFile.txt

Inte rnal Ele me nts: De finition of Re source Type s and Traits

Resource types and traits are specified for providing reuse within the same
RAML file. A resource type is a partial resource definition; resource types are
thus applied on resource definitions. A trait is a partial method definition;
traits are thus applied on methods.

Resource types and traits are defined in the root element of the RAML
document. In the following section we show how the resource types and traits
can be applied inside API specifications.

#%RAML 0.8
title: Book API
version: v1
resourceTypes:

- collection:
get:

description: returning a list of elements, which are pa
post:

description: adding a new element to the collection
is: [languageSelection]

traits:
- languageSelection:

queryParameters:
lang:

type: string

As a side note: A trait can even be used for defining a resource type. This is
shown in the above example. The trait languageSelection is used within the
definition of the resource type collection.

Inte rnal Ele me nts: Usage of Re source Type s and Traits

Resource types are applied by the keyword type as a direct child of the
resource. Traits are applied on method level or on resource level by the
keyword is followed by a list of the applied traits. If the trait is applied on
resource level, it applies to all methods of this resource.

#%RAML 0.8
title: Book API
/books:

type: collection
get:

is: [languageSelection]

Security

RAML language constructs for security describe how the API is protected.
This is usually a two-step approach. First, one or severalsecuritySchemes

token in the Authorization Header

are configured. Then these securitySchemes are bound to an API, to a
resource or to a specific HTTP method of a resource via the keyword
securedBy. By using this two-step approach, it is easy to achieve a consistent
application of the same securitySchemes on several resources and APIs.

A security scheme is basically a configuration, which specifies the type of the
security mechanism (OAuth 1.0, OAuth 2.0, Basic, Digest, or a wildcard for
another mechanism), the available OAuth grant types, available OAuth scopes,
parameters, headers, responses and URIs of the different OAuth endpoints. The
securitySchemes need to be declared as part of the root element. Security
schemes, e.g. for OAuth, can be defined inline or -- more often -- in separate
files.

#%RAML 0.8
title: Book API
securitySchemes:

- oauth_2_0:
description: |

OAuth 2.0 security mechanism.
type: OAuth 2.0
describedBy:

headers:
Authorization:

description: |
Send the OAuth 2 access token as Bearer

type: string
responses:

400:
description:	 |

Invalid request.
401:

description:	 |
Bad or expired token.

403:
description: |

Bad OAuth request.
settings:

authorizationUri: https://domain.com/oauth2/auth
accessTokenUri: https://domain.com/oauth2/token
authorizationGrants: [code, token]
scopes: [administrator, user]

In a second step, the defined securitySchemes can be bound to APIs,
resources or methods. There are two was to do this: either as default security,
or as security for a specific API, resource or method.

Default security is applied to all resources of the API. This can be
achieved by applying the keyword securedBy on the root element.
The default can be overwritten by specifying the securedBy keyword on
the respective API, resource or method.

When applying securitySchemes with the securedBy keyword, a list of
allowed securitySchemes can be specified. If this list contains more than one

https://domain.com/oauth2/token
https://domain.com/oauth2/auth

izationGrants: [code] }]

element, the listed securitySchemes are alternatives.
	

#%RAML 0.8
title: API
version: v3
baseUri: https://domain.com
securitySchemes:
- oauth_2_0: !include oauth_2_0.raml
securedBy: [oauth_2_0]
/admin:

get:
securedBy: [oauth_2_0: { scopes: [administrator], author

For each security scheme, additional parameters can be specified, such as the
OAuth scopes and OAuth grant types, which are required for this particular
element. The scopes and grant types, which are listed under securedBy should
be a subset of the available scopes and grant types that were declared in the
securitySchemes.

Summary

API description languages are very powerful tools for API architecture.
Proficiency in one of the main API description languages is essential for
designing an API portfolio and its API proxies efficiently. In the following
chapter we show how to make the best possible use of API descriptions by
consistently applying them throughout the API development process.

http:https://domain.com

API Methodology
An API methodology is supposed to provide an answer to the question: How
should I design and develop my APIs?

Many methodologies for proper API design and development have been
proposed and are still the subject of passionate debates. The design and
development of APIs, however, is too complex to deliver a step-by-step "How
To" guide. Instead, look at this methodology as a guideline, which provides
some goalposts along the way, that were constructed based on past failures,
experiences and learnings.

There is no right or wrong methodology, but there is a methodology that fits
into a specific company culture better than others. This is why we present a
API design and development methodology consisting of some coarse granular
phases that you can pick and choose from to ensure that the methodology you
use for your company actually fits your company culture. This is one of the best
ways to make sure that the API methodology is actually applied by the team
and is lived by the API development team every day.

Foundations

In the proposed API methodology we use best practices for design, such as
consumer-oriented design, contract first design, iterative design and
simulation-based design. In the following we introduce these best practices
and show why and how they apply to API design.

Consumer-oriented Design Approach

There are two basic methodological approaches. They are known under the
names inside-out approach and outside-in approach, depending on the starting
point and the direction of the design process. We propose the outside-in
approach because it is consumer-oriented. We mention the inside-out approach
as well to contrast and clarify the differences.

Inside -out Approach

The starting point for the inside-out approach is an analysis of what already
exists inside the organization of the API provider. For API providers, the
backend systems already exist inside the organization and are used as a basis
for defining the API. The design of an API developed with the inside-out
approach will closely resemble the structure of the backend system. Using this
approach, an API could be built just by forwarding calls to backends,
optionally some data format transformations and some protocol
transformations.

This approach is quite simple from the perspective of the API provider, since

the functional scope of the API is confined by one backend system. The
complexities of aggregating information from multiple backend systems are
reduced.

Even though this API may be simple from the perspective of the API provider,
it might be quite complex to use for API consumers, since they are confronted
with the complex data structures of the backends. Such an API is not likely to
be consumer friendly.

Outside -in Approach

In a way, the outside-in approach is the opposite to the inside-out approach.
The starting point for the outside-in approach is an analysis of what is needed
by the consumers. The consumers are outside the organization of the API
provider, thus the API provider needs to start the design process outside his
organization. Only in the last step of this approach, the API provider may make
considerations about what is inside the organization: the data formats, and the
connections to existing backends. This approach certainly means more work on
the side of the API provider, but there is a larger chance that the consumer gets
a better API.

A measure for the success of an API initiative is the wide-spread use of the
API: the API should be used by as many consumers as possible. To maximize
the uptake of APIs with potential consumers, to maximize the active usage of
the API and to maximize the integration in third party apps, the API needs to be
as simple as possible from the perspective of the consumer.

The basic guideline of this approach is to focus on the consumers. One needs
to identify the target consumers first and then get to know their needs. This
allows us to design an optimal experience for the interaction between the
consumer and the API. For the API provider it is thus important to ask: What
would the consumer want to achieve by using the API? How can I make it easy
for the consumer to find the API? How can I help the consumer to build apps
with my API and make it convenient for the consumer to use the API?

Contract First Design Approach

In contract first design, the central artifact is an explicit contract between API
provider and API consumer. Such a contract is either dictated by the provider
or better, it is specified by provider and consumer together. In this contract, the
API provider guarantees certain exactly specified APIs to the consumer. Based
on this contract, the consumer can already start implementing a solution in
parallel with the API development.

Agile Design Approach

Agility is based on the premise that you can start without having a full set of
specs. You can always adapt and change the specs later, as you go and as you
have learned more. Through multiple iterations, architectural design can

converge to the right solution. If the iterations are performed based on the
architectural blueprint and not based on a full implementation, architecture
improves the overall efficiency of development.

However, is the agile approach 100% compatible with the the requirements for
APIs?

Before publishing the API, the API can be changed and the agile approach
can be used. Change is easy and possible at any time.
After publishing the API, changes become difficult. If a published API
changes, clients could get broken. New versions need to be created for
each API change that is not backward compatible. The interface specs are
fully defined and thus the prerequisites for agility are no longer given.

An agile approach should only be applied, until the API is published.

Simulation-based Design

Basically every software system has dependencies to other software, such as
other software components, libraries and frameworks. Due to these
dependencies, some components cannot be developed until the development of
their dependencies has been completed. This enforces sequential development,
limits the possibilities for parallel development and requires a longer
development time. The result is a long time-to market for the complete
software system.

Simulations offer a solution: they make it possible to break up the
dependencies between software components and allow for integration and
development of software components, even though their dependencies have not
been developed, yet. Dependencies are replaced by simulations.

In API design there are two use cases for simulations:

The simulation of backend systems allows for developing APIs without
fully implemented backend systems.
The simulation of APIs allows for developing API solutions without
fully implemented APIs.

Simulation of Backe nds

Since APIs depend on the backend systems and their behavior, the
implementation of an API can only start after the backend has become
available. If the backend has not been finalized yet, the development of the API
is blocked and the API cannot be built.

Simulations of backend systems can be used to support the development of
APIs. Backend simulations break the dependencies from APIs to backends. If
the real backend is not available yet, a simulation of the backend can be used
in its place. Since the behavior of the simulation is the same as the behavior of
the real backend, the implementation of the API with a simulated backend can

proceed independently of the availability of the implementation of the backend.
	

Simulation of the API

The development of an API solution, such as a mobile app, depends on the
availability of the included APIs. If the APIs are not available, the
development of the mobile app is blocked.

Simulations of APIs can support the development of mobile apps, which
depend on the APIs. Even though the API has not been implemented yet, the
mobile app can be built and the API can be integrated. The simulation speeds
up the development time of the overall API solution, and allows for short time
to market. The simulation can be created based on the API description.

Conclusion

An API solution has a certain complexity. Complexity does not simply go away
-- it has to be handled somewhere, by someone. Thus, the complexity of the
API solution can either be dealt with in the client or in the API.

If the complexity is dealt with in the client, the task of the API provider is
simple and the task of the API consumer is difficult. This is usually the result
of the inside-out approach and leads to sub-optimal APIs that make the live of
the API consumer unnecessarily hard. If the complexity is dealt with in the
API, the task of the API provider is difficult. However, the task of the API
consumer is simple. This is usually the result of the outside-in approach and
has a higher chance of producing APIs that consumers love.

Applying the ideas of contract first design to API design, allows for a clear
allocation of the complexity to the API or the client and it also allows for a
clear separation of the responsibility between API and client.

The requirements of innovative APIs might not be known from the start. An
agile approach can help to navigate in situations with unclear requirements, but
should only be applied until the API is published.

Complexity also emerges from the dependencies between clients, APIs and
backends. Applying ideas of the simulation approach allows for breaking up
the dependencies during development. It allows for an independent
development of client and API, despite the dependencies between them.

Methodology

This methodology is an outside-in approach and also incorporates ideas of
contract first design and simulation. In this methodology, the contract is
expressed in the form of an API description. In each step of the methodology,
an API description is either created, refined or used -- the API description is
the red thread connecting all the steps of the methodology.

Overview

Let's start with an overview of the phases in this API methodology. Each phase
of this methodology consists of a creative part and a verification part. During
the creative part an artifact is crafted, during the verification part early
feedback on the artifact is collected. In each phase along the design and
development journey, we elicit feedback from the consumers. This is how
feedback can be collected as early as possible, when changes to the API are
still possible, relatively simple and can be implemented at low cost.

This methodology is meant to be used iteratively. There are small iterations,
which are triggered by the verification part of the same phase. There are also
big iterations, which are triggered by one of the later verification phases and
require going back to the creative part of an earlier phase. Keep in mind, that
in an iterative and agile approach, not all information and requirements about
the constructed artifact are present in the beginning, but new and more detailed
information is gathered in each iteration.

The API methodology consists of the following phases:

1. Domain analysis
2. Architectural design
3. Prototyping
4. Building API software for production
5. Publishing the API

Phase 1: Domain Analysis

The goal of the first phase is to analyze the "problem domain", identify
resources and sketch a simple API description for each resource. This API
description can be verified by simulation and integration into a demo app.

The first step of a domain analysis phase is gaining some clarity on the needs
of the consumer and possible usage scenarios. Sketching usage scenarios is a
creative act. Start by asking yourself:

Who are the consumers of the API?
What is the goal of the API?
Which API solutions do the consumers plan to build with the API?
Which other API solutions would be possible with the API?

Even though the development of new APIs is usually triggered by a concrete
project, the goal should be the development of a generic API. Thus, not only
the usage scenario at hand, or the obvious usage scenario should be sketched.
Ideally, a broad set of usage scenarios for the API should be sketched.
Sketching can be either in some form of graphics or in the form of text.

The next step is to build a resource taxonomy for the given usage scenarios.
Think from a consumer's perspective about the usage scenario, try not to have
the tinted view of some existing backend structure or existing database tables,

since those provide an internal view. Take on the view of the API consumer.
How would an API look like that he wants to use? What apps would the
consumer want to build? What data objects would the consumer want to use in
his apps?

Start by writing down the usage scenario, then select the nouns in the text.
Shortlist the nouns that would make sense as resource, i.e. nouns for which it
would make sense to call operations for create, read, update or delete. As part
of the taxonomy creation, one needs to analyze the relationships between the
resources. Any pair of resources can be either dependent or independent. One
dependent resource cannot exist without the other. An independent resource on
the other hand can exist without any other resource. Associative resources
exist independently but still have some kind of relation., e.g. they may be
connected by reference.

The next step is to think about the states and possible transitions. The resources
in the taxonomy have some state and during the execution of the app, the
resource may change its state and transition into a new state. You can express
the states and transitions in a state diagram.

The states provide an indicator for the resources that are needed. The
transitions in the diagram provide an indicator for the HTTP methods that need
to be supported.

With the information collected during domain analysis, a first API description
can be built. This first model is rather a sketch than an architecture, but it still
allows defining the API resources, their vocabulary, and which operations will
manipulate those resources.

Ve rification of Phase 1: Simulation & De mo App

A good simulation allows us to answer some questions about a planned system
without having to spend all the effort of building that system. At this stage, the
verification amounts to answering questions about the purpose and effect of the
API: Does it make sense to build an API with the given functionality for the
usage scenarios at hand? Does the sketched API help me build the solution?

To answer these questions, a first, low-fidelity API prototype should be built.
Such an early prototype should only be built, when the effort for creating the
prototype is minimal. This is why the API prototype should not be
implemented manually, but it should be constructed automatically by generating
a simulation based on the API description. Frameworks for API description
languages offer capabilities for generating simulations.

The simulation provides a verification of the stand-alone API. More effective
would be a verification of the API in the context of a solution: to verify that the
API is relevant and usable, the integrated API needs to be verified in the
context of an API solution or app. This is not necessarily an app with real
requirements. A simple demo app for an artificial problem is sufficient. The
simplest demo app would be a little bit more than a curl call. The demo app

provides a showcase for the API and can be reused in later stages.
	

At this stage, the goal of the verification with the simulation is: Are the
requirements of the API properly captured in the API description?

Phase 2: Architectural Design

During the architectural design phase, the API description is refined. First of
all, an appropriate architectural style should be chosen, such as REST, RPC or
HATEOAS. In a second step, architectural design should make decisions
about:

Protocols
Resources
URI design
HTTP methods
Security
Performance and availability
Quotas and traffic shaping

These design decisions should be documented by refining and updating the API
description. The API description thus becomes an evolving, single source of
truth about the current state of the system.

Once the bigger-picture, architectural design decisions are nailed, detailed
design decisions can be handled. These design decisions include:

Representations
Content type
Parameters
HTTP methods
HTTP status codes
Consistent naming

As before, the detailed design decisions are documented by refining the API
description.

In addition to the above design decisions, it should be avoided to reinvent the
wheel for common APIs. Instead, existing API templates (such as those found
on http://apicommons.org) should be used. APIs should also be designed as a
part of the API portfolio. Design decisions should be consistent with the other
APIs of the portfolio.

Ve rification of Phase 2: Simulation & De mo App

A simulation should be used at this point to quickly verify the effects of the
architectural and detailed design decisions. The following questions might
help: Is the API still easy to use? Is it still a small, agile and usable API or did
we create a monster API? Does this API help us to realize our usage
scenarios? Does the API follow the architectural style selected?

http://apicommons.org

Ideally, the changes that are necessary to the API description at this stage are
minimal. The API description should become stable.

The API description can be handed off to pilot consumers, so they can base the
design of their API solution, such as their mobile app, on our implementation.
The demo app created in the previous phase can be reused for integration
testing of the simulated API.

Phase 3: Prototyping

"Plan to throw one away; you will anyhow. "
-- Frederick P. Brooks

Prototyping is a preparation phase for the productive implementation. One goal
of prototyping is to learn as much practical insights as possible with as little
effort as possible. Another goal of the prototyping phase is to quickly create a
simple implementation, that you plan to throw away. Since not every aspect of
the API can be implemented, it is important to identify critical aspects of the
API, whose feasibility needs to be assessed. The prototype implementation
will be tested by pilot consumers. There are thus two constraints for proper
prototyping: practical insights into critical implementation issues and a low
effort for the creation of the prototype.

The first constraint is to gain practical insights through the prototyping effort.
To gain some learning with practical relevance, the API prototype needs to be
as realistic as possible. While simulations can be considered to be low-
fidelity prototypes, this phase creates high-fidelity prototypes that are more
realistic, more relevant and closer to the actual implementation. The API
prototype should conform to the API description and use real data from real
backends.

At the same time, there is the second constraint, which requires the prototype
to be built as quickly as possible and with as little effort and budget as
possible. To achieve the necessary speed, the implementation may be not
pretty, not optimized and contain engineering shortcuts.

To fulfill both constraints, code generation can be used. Code generation for
API proxies is offered for all API description languages. Properly generated
code conforms to the API description. However, the generated code has
"holes", only the interface of the API can be generated. The generated code is
merely a skeleton. It provides some structure and the correct interface, but the
"meat", the implementation, has to be added manually around the skeleton. The
missing code can be added with relatively low effort, since the skeleton
already provides a structure.

So which implementation tasks needs to be done? This is highly flexible. If the
real backends are available, they may be integrated, otherwise a simulation of
the backend is used. Requests and responses of the backends need to be
transformed, input and output need to be validated and security needs to be

implemented and configured, just to name a few. Some implementation details
can be left out at this stage, such as traffic shaping or performance
optimizations.

An API prototype is always an imperfect and incomplete implementation of the
API. Actually, the prototype implementation has to be incomplete, otherwise
too much time has been scheduled for realizing the prototype. Thus it is critical
to have a clear focus on those critical aspects that should be implemented. To
maximize the learnings from prototyping, one should focus on implementing the
aspects, which are most critical. For one API, the backend connection may be
on the critical path, for another API, it may be a complex validation algorithm.
Focus on these critical issues and use shortcuts for the other issues to get to a
testable prototype quickly. If the backend connection is not on the critical path,
the prototype API does need to be connected to the real backend and a
simulation of the backend is sufficient at this stage.

For simple APIs without any critical issues or the need to learn anything before
implementation, one might be able to hop over the prototyping phase and go
directly to the implementation phase.

Validation of Phase 3: Acce ptance Te sts with Pilot Consume rs

API prototypes are usually built to answer the question "What are the major
hurdles for building this API?" Besides exploring the feasibility, the prototype
can be used for acceptance tests by pilot consumers. Let' s see what this means.

In general, an acceptance test is a black-box testing method, where users test if
the specifications and requirements of a system are met. Acceptance tests are
used to verify the completeness of a system. In our case, API consumers test
the API prototype. Ideally, they use the API when designing or building their
app. In an acceptance test of the API, the consumers answer the question "Does
this API provide some value for my app?"

Pilot consumers need to be API consumers, who are willing to work with
unfinished APIs with changing interfaces, broken clients, frequent updates,
unavailability and low performance of the API. In short: a pilot customer must
be able to bear some pain. This is why pilot consumers are typically recruited
from inside the organization of the API provider, for example from a
department of the API provider. In some environments, pilot consumers are
also called beta testers. Ideally, the pilot consumer writes an app that solves a
real problem, sometimes a pilot consumer may just write a demo app for
testing the API. Why would an API provider voluntarily become an pilot
consumer? The advantage for pilot consumers is early access to innovative
APIs, allowing for short time-to-market of the consumer's app. This is an
advantage that should not be underestimated in an ecosystem, where time-to-
market has high impact on the market share.

Besides the validation by pilot customers, the API prototype should also be
checked for conformance with the API descriptions. To some extent,
conformance between implementation and API description is already ensured

by the code generation. However, generated code may have been changed and
manually added code may still need to be checked. Such a test should include
JSON well-formedness checks and JSON schema validation of the results.
Both of these tests can be generated from the API description. Additional tests
might need to be added manually.

Phase 4: Implementation for Production

The implementation for production has similar constraints as the prototype
implementation described in the previous section. The implementation needs to
conform to the API description and needs to be delivered as quickly as
possible. In addition, the API is fully integrated into the API portfolio. The
goal of properly engineering software systems, is to ensure not only the correct
functional but also the correct non-functional aspects. Some of the most
important non-functional aspects of APIs are security, performance, and
availability.

When an API has reached this phase of the methodology, the API description
has been properly designed, has gone through several feedback loops has been
verified from several perspectives. The API description should thus be stable.
Just as in the previous phase, the stable and verified API description is used as
a blueprint for automatically generating an API implementation skeleton.
Automatic code generation ensures that the implementation is consistent with
the API description, and thus is consistent with all the design decisions the
description embodies.

However, the generated code is merely a code skeleton. The behavior of the
API needs to be implemented manually, by filling in the gaps of the code
skeleton. In the previous phase, the feasibility of the implementation has been
shown, critical aspects of the implementation have already been tested and
many insights have been gained. These insights are now applied during the
implementation phase.

The focus of the implementation in this phase is thus, the proper engineering of
the API. Proper software engineering practices need to be used. For example,
common patterns should be identified, factored out into libraries, so they can
be reused across the API portfolio.

Production systems also need to exhibit appropriate non-functional properties.
The security of the API needs to be ensured. This can be achieved by choosing
and enforcing adequate security mechanisms. The availability and performance
of the API need to be ensured. These properties can be ensured by applying
rate limitation and caching.

Ve rification of Phase 4: Acce ptance Te sts with Pilot Consume rs

The set of pilot consumers typically grows as the API matures. The first group
of pilot consumers used in the prototyping stage may consist of internal
consumers of the API provider. As the API matures, the set of pilot consumers
may evolve into a number of hand-picked API consumers.

Phase 5: Publish

Publishing an API does not require a lot of work, but it is a big milestone for
the API. From an organizational perspective, the responsibility of the API is
transferred from the development unit to the operations unit. But most
importantly, the API and its documentation become publicly available, API
consumers will start building API clients and start using the API.

Publishing the API also means freezing its interface specification. After
publishing, there is no agility in the development process any longer. Changes
on published APIs require a traditional change management process.

For each published API, the API provider has an implicit contract with all its
API consumers, which states the interface of the API. This is why once an API
gets published, its interface can never change and the API needs to be
maintained for a long time. Publishing an API implies a long-term commitment
for maintaining it.

Publishing an API requires an appropriate documentation for consumers. It
almost goes without saying that the documentation needs to be consistent with
the implementation. Sometimes, however, the problem is that the
implementation gets changed during maintenance or redesign, but the
documentation is not updated. This can be avoided by generating both the
implementation skeleton and the documentation from the same single source of
truth, from the API description.

Ve rification of Phase 5: Study Me trics, Re ports and Logs

It is the expectation for a published API that an increasing number of
consumers successfully use the API. To be able to find out if and how this
expectation is fulfilled by the API, usage of the API has to be monitored,
measured and analyzed. Some of the metrics, which might be interesting in this
context are: the total number of API calls per time frame, the number of API
calls per consumer, and how many API calls resulted in an error vs in success.
Not only quantitative analysis is relevant, but also some qualitative analysis.

Qualitative analysis includes for example understanding and categorizing the
solutions, which the API consumers build with the API. An API provider
would like to discover if API consumers use the API as intended or if they use
the API in new ways that were never imagined by the API provider at the
outset. Which of the usage scenarios were correctly predicted and which new
usage scenarios evolved? This can also be a trigger point to find out if a new
version of the API is needed and to determine if it needs to be redesigned.

For a quantitative analysis, the first step is to determine the usage of the API.
The second step is to determine how successful the API is in contributing to the
API solution. The third step is to draw conclusions, discover patterns in the
usage, compare all the APIs in the portfolio. A relevant metric is the number
successful API calls, especially if compared to the number of unsuccessful API
calls. Do some API consumers have trouble getting the API to work as

intended? Are there lots of error messages? Analyses according to this metric
could be a trigger for updating the API documentation or redesigning the API.

Metrics are not only interesting to the API provider, but also to the API
consumers. They are interested in API analytics, dashboards, reports and
monitoring. The service availability metrics such as status reports, up-time and
response time should not only be available to the API provider, but also to the
consumers.

The API provider needs to continuously evaluate if the business objectives are
met and if the business objectives are still up to date. Metrics allow for
calculating business value and the ROI for the API provider. Metrics allow for
understanding the consumers and marketing to them better. Based on the
feedback gained and the insights obtained from analytics, the provider can
improve the API.

Metrics based on consumer behavior are the real feedback for the success of
the API. They allow for measuring if the adoption is as expected and if the
revenue is as expected. Even for successful APIs, the business or market might
change and require a review if the API is still adequate for the market as it is
today. API needs to be easy to adjust to react to changing market needs,
business needs or problems with the API in a quick and agile manner.

Maintenance

The simple rule for API evolution is, that the externally observable behavior of
an API (from the perspective of the clients) cannot be changed, once the API
has been published. Already a small change to the API might break some of the
clients consuming the API. It is impossible to update all the consumers or at
least unrealistic, since they are under control of different owners. Thus,
longevity and stability are important aspects of published APIs.

The restriction imposed by this rule might sound severe and even counter-
intuitive, since APIs are often developed using an agile development approach.
Agile approaches are based on feedback loops and the idea of many
incremental changes of the software. The agile development methodology still
applies to new or unpublished APIs.

Before the publication of the API, any change can be implemented in an agile
manner. As soon as the API is published, however, the game changes. When
APIs are published, they become available for consumers and it has to be
assumed that the consumers build apps with the APIs. Published APIs cannot
be changed in an agile manner. At least, APIs need to stay backward (and
forward) compatible, so that old clients do not break and new clients can use
the new and improved features.

Discussion

Hand-off Points

In this methodology, the contract is expressed in the form of an API
description. In each phase of the methodology, an API description is either
created, refined or used -- the API description is the red thread connecting all
the steps of the methodology.

When can the API description be handed off to pilot consumers? Pilot
consumers need to be patient and they need to be aware of the fact that their
clients might break, since the API description might still change. The earliest
point in time at which a hand-off of the API description makes sense, is after
the architectural and detailed design phase has been finished, the API
description has been created and has been simulated successfully.

When is the API description finished? The API description is only really
finished, when the API has been published, in the final phase of the
methodology. After publishing the API, the API description is frozen and
cannot be changed without breaking potential clients.

Pre-Work vs. Actual Work

When you look at the proposed methodology, you can see that a lot of "pre-
work" is done, before the actual implementation for production starts. Is this a
waste of time? No, this pre-work is required so the API is stable and does not
need to be changed early on. Once an API is published, an implicit (or
sometimes explicit) contract between API provider and API consumer is made.
In this contract, the API provider agrees to support the API for some time into
the future, and will not make any changes that might break the client. For the
consumers this means that they can rely on the API to be around for a while and
thus dare to build solutions with it. To ensure this behavior, the pre-work is
necessary.

For the API provider, however, this contract is way more constraining. The
contract binds the API provider to support the API. Changes are not possible
on the published API. If the API provider notices too late (i.e. after publishing)
that the API should actually look and behave differently, the existing API
cannot just be updated, since this would break the existing clients. And this is
the reason for investing into the "pre-work", design and verification before
beginning the "actual work" of implementation.

Summary

Many methodologies for proper API design and development have been
proposed and these methodologies are subject of passionate debates.
However, there is no wrong or right methodology, but there is a methodology
that fits into a specific company culture better than others.

This is why we propose that you pick and choose the phases or steps from this
design and development methodology to ensure that it really fits your culture.
This is one of the best ways to make sure that the API methodology is actually
adopted and lived by the team.

Conclusion
In all technical discussions about APIs it should not be forgotten, that none of
these topics is as important as satisfied API consumers. If API consumers are
satisfied with the API and use it, it does not matter if your REST design is
compatible with every aspect of Roy Fieldings thesis.

When building APIs, you need to focus on the API consumer. An API needs to
be simple from the API consumer's perspective. How to build APIs that target
the consumer? Sometimes you don't know from the beginning who the
consumers are, or what they want. Sometimes you might only gradually find
out, what the needs of API consumers are.

What does this mean for the API provider that needs to build APIs? An API
provider might need to bend over backwards to build APIs that are simple for
the consumers. This also means that API implementation might become a bit
more complex. To deal with this complexity, API providers need some
structure, tools and methods. This book provides a structure for building
consumer-focused APIs. We call this structure API architecture; it consists of
the solution architecture, platform architecture, portfolio architecture, proxy
architecture. Some practical tips:

Learn about the solution archite cture of your consumers. Become clear
on who your API consumers are, which solutions they want to build and
what they expect from your API.
Choose a platform archite cture as a foundation that simplifies your
work as API provider as much as possible and supports not only API
operation, but also API development and consumer engagement.
Do not merely design isolated API proxies, but design your portfolio
archite cture as a whole.
Use an API description language for specifying the API proxy
	
archite cture of each API in the portfolio.
	
Build your de sign and de ve lopme nt me thodology around your activities
with the API description language. Use the API description language for
the design and development of your API proxies.

Backmatter
Feedback

If you enjoyed this book and got some value from it, it would be great if you
could share with others what you liked about the book on the Amazon kindle
review page.

If you feel something was missing or you are not satisfied with your purchase,
please contact me at matt@api-university.com. I read this email personally and
am very interested in your feedback.

About the Author
Matthias uses his background in software engineering to bring innovative
software solutions to the market. Matthias has provided expertise to
international and national companies on software architecture, software
development processes and software integration. At some point he got a PhD.

As an expert in API management and mobile technologies, Matthias enjoys
developing innovative products side-by-side with the clients and loves sharing
his knowledge in the classroom, at workshops and in his books. Matthias is an
instructor at the API-University, publishes a blog on APIs, is author of several
books on APIs and regularly speaks at technology conferences.

Other Products by the Author

OAuth 2.0: API Security Book by M atthias Biehl

Synopsis: This book offers an introduction to API Security with OAuth 2.0. In
less than 80 pages you will gain an overview of the capabilities of OAuth. You
will learn the core concepts of OAuth. You will get to know all 4 OAuth Flows
that are used in cloud solutions and mobile apps. If you have tried to read the
official OAuth specification, you may get the impression that OAuth is
complicated. This book explains OAuth in simple terms. The different OAuth
Flows are visualized graphically using sequence diagrams. The diagrams
allow you to see the big picture of the various OAuth interactions. This high-
level overview is complemented with a rich set of example requests and
responses and an explanation of the technical details. In the book the
challenges and benefits of OAuth are presented, followed by an explanation of
the technical concepts of OAuth. The technical concepts include the actors,
endpoints, tokens and the four OAuth flows. Each flow is described in detail,
including the use cases for each flow. Extensions of OAuth - so called profiles
- are presented, such as OpenID Connect and the SAML2 Bearer Profile.
Sequence diagrams are presented to explain the necessary interactions.
Paperback Book

https://www.amazon.com/review/create-review?ie=UTF8&asin=B00Y3EGV8Y
mailto:matt@api-university.com
http://api-university.com/
http://api-university.com/books/oauth-2-0-book

Kindle eBook

API Design Book by M atthias Biehl

Synopsis: This book offers an introduction to RESTful API Design. It covers
the technical aspects of API Design, including the correct use of protocols,
resources, URIs, representations, content types, data formats, parameters,
HTTP status codes and HTTP methods. It also includes best practices for
evolution and versioning, security, performance and availability issues.

API description languages are introduced as a way to document API design
decisions. An API development methodology is introduced, which allows for
the quick development.

Kindle eBook

OAuth 2.0 Online Course by M atthias Biehl

Synopsis: This course offers an introduction to API Security with OAuth 2.0.
In 3 hours you will gain an overview of the capabilities of OAuth. You will
learn the core concepts of OAuth. You will get to know all 4 OAuth flows that
are used in cloud solutions and mobile apps.
Online Course

http://api-university.com/books/oauth-2-0-book
http://api-university.com/books/api-architecture-and-design/
http://api-university.com/courses/oauth-2-0-course/

References
1.		IETF, URI Template, IETF RFC 6570, https://tools.ietf.org/html/rfc6570
2.		IETF, Uniform Resource Identifier (URI): Generic Syntax, IETF RFC
	

3986, https://tools.ietf.org/html/rfc3986
	
3.		IETF, HTTP Authentication: Basic and Digest Access Authentication,
	

IETF RFC 2617, https://www.ietf.org/html/rfc2617
	
4.		IETF, The OAuth 2.0 Authorization Framework, IETF RFC
	

6749, https://tools.ietf.org/html/rfc6749
	
5.		Matthias Biehl, OAuth 2.0 - Getting Started in Web-API Security, 2015,

ISBN-13: 978-1507800911
6.		OpenID Connect 1.0, http://openid.net/specs/openid-connect-core-

1_0.html
	
7.		IETF, Hypertext Transfer Protocol -- HTTP/1.1, IETF RFC
	

2616, https://www.ietf.org/html/rfc2616
	
8.		Roy Thomas Fielding's PhD dissertation "Architectural Styles and the

Design of Network-based Software
Architectures", http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

9.		IETF, UUID, IETF RFC 4122, https://tools.ietf.org/html/rfc4122
10.		IETF, Timestamp, IETF RFC 3339, https://www.ietf.org/html/rfc3339
11.		ECMA, ECMAScript/JavaScript, http://www.ecma-

international.org/publications/files/ECMA-ST/Ecma-262.pdf
	
12.		Swagger Language Specification, 2015, https://github.com/swagger-

api/swagger-spec/blob/master/versions/2.0.md
13.		RAML Language Specification, 2015, http://raml.org/spec
14.		Mashery IO Docs, 2015, http://www.mashery.com/product/io-docs
15.		API Blueprint, 2015, https://github.com/apiaryio/api-

blueprint/blob/master/API%20Blueprint%20Specification.md
16.		W3C, WSDL Web Services Description Language version 1.1,

2001, http://www.w3.org/TR/wsdl
17.		W3C, WADL Web Application Description Language version 1.0,

2009, http://www.w3.org/Submission/wadl
18.		Martin Fowler, Public versus Published Interfaces,

2002, http://martinfowler.com/ieeeSoftware/published.pdf
19.		JSON RPC version 2, 2010, http://www.jsonrpc.org/specification
20.		XML RPC version 2, 2013, http://www.jsonrpc.org/specification
21.		W3C, SOAP version 1.2, 2007, http://www.w3.org/TR/soap12
22.		IETF, WebSockets RFC 6455, 2011, https://tools.ietf.org/html/rfc6455
23.		IANA, Media Types Registry, http://www.iana.org/assignments/media-

types
24.		Stefan Gössner, JSONPath, 2015, http://goessner.net/articles/JsonPath
25.		JSON Schema, http://json-schema.org
26.		W3C, Extensible Markup Language (XML) 1.0,

2008, http://www.w3.org/TR/xml
27.		W3C, XPath 3.0, 2014, http://www.w3.org/TR/xpath-30
28.		W3C, XML Schema, 2004, http://www.w3.org/TR/xmlschema-1
29.		YAML, 2009, http://www.yaml.org/spec
30.		Matthias Biehl, API Design, API University, 2015

https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc3986
https://www.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html
https://www.ietf.org/html/rfc2616
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc4122
https://www.ietf.org/html/rfc3339
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
http://raml.org/spec
http://www.mashery.com/product/io-docs
https://github.com/apiaryio/api-blueprint/blob/master/API%20Blueprint%20Specification.md
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/wadl
http://martinfowler.com/ieeeSoftware/published.pdf
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
http://www.w3.org/TR/soap12
https://tools.ietf.org/html/rfc6455
http://www.iana.org/assignments/media-types
http://goessner.net/articles/JsonPath
http://json-schema.org
http://www.w3.org/TR/xml
http://www.w3.org/TR/xpath-30
http://www.w3.org/TR/xmlschema-1
http://www.yaml.org/spec

Image Sources

Thanks to Roberto Taddeo for providing permission to use his photography
as cover picture.

Icons made by Freepik from www.flaticon.com are licensed under creative
commons.

https://www.flickr.com/photos/robertotaddeo/
https://www.flickr.com/photos/robertotaddeo/11103288744
http://www.flaticon.com/authors/freepik
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

Inhaltsverzeichnis

Introduction 4
	
What is an API? 4
	
Why APIs? 4
	
How to use APIs? 5
	
How to build APIs? 6
	
What is API Architecture? 7
	
How to put API Architecture into Practice? 7
	
Why is API Architecture Important? 7
	
Overview of this Book 8
	

API Solution Architecture 14
	
Types of API Solutions 14
	

Mobile Solutions 14
	
Cloud Solutions 15
	
Web Solutions 15
	
Integration Solutions 15
	
Multi-Channel Solutions 16
	
Smart TV Solutions 16
	
Internet of Things 17
	

Stakeholders in API Solutions 17
	
API Providers 17
	
API Consumers 18
	
End Users 19
	

API-related Design Decisions 19
	
What do all types of API solutions have in common? 19
	
Functionality in the client or in the API? 19
	
Use existing API or build a new API? 20
	
How to choose a third party API? 20
	

: Find the API 20
	Step 1
: Learn about the API 20
	Step 2
: Test the API 21
	Step 3

Step 4: Use the API 21
	

API Platform Architecture 22
	
Overview 22
	
API Development Platform 23
	

Library of API Building Blocks 23
	
Language for Implementing APIs 24
	
Language for Designing APIs 25
	

API Runtime Platform 25
	
API Engagement Platform 26
	

API Platform Configurations and Interactions 26
	
Different Environments 26
	
API Platform Deployment Models 27
	
Interactions between the Platforms 27
	
Design and Development 28
	
Deployment 28
	
Publishing 28
	

Surrounding Systems 28
	
Load Balancers and Firewalls 29
	
Identity and Access Management Infrastructure 30
	
Existing Functionality in Backends 30
	
New Functionality 31
	
Enterprise Service Buses and SOA Platforms 31
	

API Portfolio Architecture 33
	
Requirements 33
	

Consistency 33
	
Reuse 33
	
Customization 34
	
Discoverability 34
	
Longevity 34
	

Governance 34
	
Consistency 35
	

Consistency Checks in Practice 36
	
Reuse 36
	

Reuse of API Features 36
	
Reuse of Complete APIs 37
	
Reusing own APIs 37
	
Reusing Third Party APIs 37
	

Customization 38
	
Customization Approach 39
	
Summary 40
	

Discoverability 40
	
Manual Discovery 40
	
Automated Discovery 41
	

Change Management and Versioning 41
	
The Evolution Challenge 42
	
Why does the Evolution Challenge exist at all? 42
	
Classifying API Evolution 42
	
Backward Compatible Changes 42
	
Forward Compatible Changes 43
	
Incompatible Changes 43
	

Dealing with Evolution in APIs 44
	

Hypermedia 44
	
Provisioning 44
	

Anticipating and Avoiding Evolution 44
	
Prevent Feature Creep 45
	

API Proxy Architecture 46
	
Requirements for APIs 46
	

Responsibilities of APIs 46
	
Gathering Data 46
	
Structuring and Formatting Data 46
	
Delivering Data 47
	
Securing and Protecting 47
	

Desirable Properties of APIs 47
	
Architectural Patterns 49
	

Client Server Patterns 49
	
Stateful Server Pattern 49
	
Stateless Server Pattern 49
	

Facade Pattern 50
	
Advanced Use of the Facade Pattern 51
	

Proxy Pattern 51
	
Architectural Styles 51
	

REST Style 52
	
REST Concepts 52
	
REST Constraints 53
	
Advantages of REST 53
	

HATEOAS Style 54
	
HATEOAS Concepts 54
	
HATEOAS Constraints 55
	
Advantages of HATEOAS 55
	

RPC Style 55
	
How does RPC work? 55
	
JSON-RPC 55
	
XML-RPC 56
	

SOAP Style 56
	
Architectural Trade-offs 56
	
RPC in Comparison to REST 57
	
HATEOAS in Comparison to REST 57
	
SOAP in Comparison to REST 58
	
Conclusion 58
	

API Description Languages 60
	
What are API Description Languages? 60
	

API Description Language vs. API Development Language 61
	
Usage 61
	

Communication and Documentation 61
	
Design Repository 63
	

Contract Negotiation 63
	
API Implementation 63
	
Client Implementation 64
	
Discovery 64
	
Simulation 65
	

Language Features 65
	
Swagger 66
	

Introduction 66
	
Example 67
	
Root Element 68
	
Resources 69
	
Schema 71
	
Parameters 72
	
Reusable Elements 72
	
Security 73
	
Security Definition 74
	
Security Binding 74
	

RAML 75
	
Introduction 75
	
Example 76
	
Root Element 77
	
Resources 77
	
Schema 78
	
Parameters 79
	
Path Parameters 79
	
Query Parameters 79
	
Form Parameters 80
	
Header Parameters 80
	

Reusable Elements 80
	
External Elements: Inclusion of Files 80
	
Internal Elements: Definition of Resource Types and Traits 81
	
Internal Elements: Usage of Resource Types and Traits 81
	

Security 81
	
Summary 83
	

API Methodology 84
	
Foundations 84
	

Consumer-oriented Design Approach 84
	
Inside-out Approach 84
	
Outside-in Approach 85
	

Contract First Design Approach 85
	

Agile Design Approach 85
	
Simulation-based Design 86
	
Simulation of Backends 86
	
Simulation of the API 87
	

Conclusion 87
	
Methodology 87
	

Overview 88
	
Phase 1: Domain Analysis 88
	
Verification of Phase 1: Simulation Demo App 89
	

Phase 2: Architectural Design 90
	
Verification of Phase 2: Simulation Demo App 90
	

Phase 3: Prototyping 91
	
Validation of Phase 3: Acceptance Tests with Pilot Consumers 92
	

Phase 4: Implementation for Production 93
	
Verification of Phase 4: Acceptance Tests with Pilot
	 93 Consumers
	

Phase 5: Publish 94
	
Verification of Phase 5: Study Metrics, Reports and Logs 94
	

Maintenance 95
	
Discussion 95
	

Hand-off Points 95
	
Pre-Work vs. Actual Work 96
	

Summary 96
	

Conclusion 98
	
Backmatter 99
	
References 101
	

	Introduction
	What is an API?
	Why APIs?
	How to use APIs?
	How to build APIs?
	What is API Architecture?
	How to put API Architecture into Practice?
	Why is API Architecture Important?
	Overview of this Book

	API Solution Architecture
	Types of API Solutions
	Mobile Solutions
	Cloud Solutions
	Web Solutions
	Integration Solutions
	Multi-Channel Solutions
	Smart TV Solutions
	Internet of Things

	Stakeholders in API Solutions
	API Providers
	API Consumers
	End Users

	API-related Design Decisions
	What do all types of API solutions have in common?
	Functionality in the client or in the API?
	Use existing API or build a new API?
	How to choose a third party API?
	Step 1: Find the API
	Step 2: Learn about the API
	Step 3: Test the API
	Step 4: Use the API

	API Platform Architecture
	Overview
	API Development Platform
	Library of API Building Blocks
	Language for Implementing APIs
	Language for Designing APIs

	API Runtime Platform
	API Engagement Platform
	API Platform Configurations and Interactions
	Different Environments
	API Platform Deployment Models
	Interactions between the Platforms
	Design and Development
	Deployment
	Publishing

	Surrounding Systems
	Load Balancers and Firewalls
	Identity and Access Management Infrastructure
	Existing Functionality in Backends
	New Functionality
	Enterprise Service Buses and SOA Platforms

	API Portfolio Architecture
	Requirements
	Consistency
	Reuse
	Customization
	Discoverability
	Longevity

	Governance
	Consistency
	Consistency Checks in Practice

	Reuse
	Reuse of API Features
	Reuse of Complete APIs
	Reusing own APIs
	Reusing Third Party APIs

	Customization
	Customization Approach
	Summary

	Discoverability
	Manual Discovery
	Automated Discovery

	Change Management and Versioning
	The Evolution Challenge
	Why does the Evolution Challenge exist at all?
	Classifying API Evolution
	Backward Compatible Changes
	Forward Compatible Changes
	Incompatible Changes

	Dealing with Evolution in APIs
	Hypermedia
	Provisioning

	Anticipating and Avoiding Evolution
	Prevent Feature Creep

	API Proxy Architecture
	Requirements for APIs
	Responsibilities of APIs
	Gathering Data
	Structuring and Formatting Data
	Delivering Data
	Securing and Protecting

	Desirable Properties of APIs

	Architectural Patterns
	Client Server Patterns
	Stateful Server Pattern
	Stateless Server Pattern

	Facade Pattern
	Advanced Use of the Facade Pattern

	Proxy Pattern

	Architectural Styles
	REST Style
	REST Concepts
	REST Constraints
	Advantages of REST

	HATEOAS Style
	HATEOAS Concepts
	HATEOAS Constraints
	Advantages of HATEOAS

	RPC Style
	How does RPC work?
	JSON-RPC
	XML-RPC

	SOAP Style
	Architectural Trade-offs
	RPC in Comparison to REST
	HATEOAS in Comparison to REST
	SOAP in Comparison to REST
	Conclusion

	API Description Languages
	What are API Description Languages?
	API Description Language vs. API Development Language

	Usage
	Communication and Documentation
	Design Repository
	Contract Negotiation
	API Implementation
	Client Implementation
	Discovery
	Simulation

	Language Features
	Swagger
	Introduction
	Example
	Root Element
	Resources
	Schema
	Parameters
	Reusable Elements
	Security
	Security Definition
	Security Binding

	RAML
	Introduction
	Example
	Root Element
	Resources
	Schema
	Parameters
	Path Parameters
	Query Parameters
	Form Parameters
	Header Parameters

	Reusable Elements
	External Elements: Inclusion of Files
	Internal Elements: Definition of Resource Types and Traits
	Internal Elements: Usage of Resource Types and Traits

	Security

	Summary

	API Methodology
	Foundations
	Consumer-oriented Design Approach
	Inside-out Approach
	Outside-in Approach

	Contract First Design Approach
	Agile Design Approach
	Simulation-based Design
	Simulation of Backends
	Simulation of the API

	Conclusion

	Methodology
	Overview
	Phase 1: Domain Analysis
	Verification of Phase 1: Simulation Demo App

	Phase 2: Architectural Design
	Verification of Phase 2: Simulation Demo App

	Phase 3: Prototyping
	Validation of Phase 3: Acceptance Tests with Pilot Consumers

	Phase 4: Implementation for Production
	Verification of Phase 4: Acceptance Tests with Pilot Consumers

	Phase 5: Publish
	Verification of Phase 5: Study Metrics, Reports and Logs

	Maintenance
	Discussion
	Hand-off Points
	Pre-Work vs. Actual Work

	Summary

	Conclusion
	Backmatter
	References

